On Recovering the Best Rank-? Approximation from Few Entries

On Recovering the Best Rank-? Approximation f ...
Shun Xu, Shun Xu
Locate

My Reading Lists:

Create a new list

Check-In

×Close
Add an optional check-in date. Check-in dates are used to track yearly reading goals.
Today


Buy this book

Last edited by MARC Bot
December 9, 2022 | History

On Recovering the Best Rank-? Approximation from Few Entries

In this thesis, we investigate how well we can reconstruct the best rank-? approximation of a large matrix from a small number of its entries. We show that even if a data matrix is of full rank and cannot be approximated well by a low-rank matrix, its best low-rank approximations may still be reliably computed or estimated from a small number of its entries. This is especially relevant from a statistical viewpoint: the best low-rank approximations to a data matrix are often of more interest than itself because they capture the more stable and oftentimes more reproducible properties of an otherwise complicated data-generating model. In particular, we investigate two agnostic approaches: the first is based on spectral truncation; and the second is a projected gradient descent based optimization procedure. We argue that, while the first approach is intuitive and reasonably effective, the latter has far superior performance in general. We show that the error depends on how close the matrix is to being of low rank.

Our results can be generalized to the spectral and entrywise error and provide flexible tools for the error analysis of the follow-up computation. Moreover, we derive a high-order decomposition of the error. With an explicit expression of the main error source, we obtain an improved estimate of the linear form. Both theoretical and numerical evidence is presented to demonstrate the effectiveness of the proposed approaches.

Publish Date
Language
English

Buy this book

Book Details


Edition Notes

Department: Statistics.

Thesis advisor: Ming Yuan.

Thesis (Ph.D.)--Columbia University, 2022.

Published in
[New York, N.Y.?]

The Physical Object

Pagination
1 online resource.

ID Numbers

Open Library
OL43514056M
OCLC/WorldCat
1336877358

Source records

marc_columbia MARC record

Community Reviews (0)

Feedback?
No community reviews have been submitted for this work.

Lists

This work does not appear on any lists.

History

Download catalog record: RDF / JSON / OPDS | Wikipedia citation
December 9, 2022 Created by MARC Bot Imported from marc_columbia MARC record