It looks like you're offline.
Open Library logo
additional options menu

MARC Record from OpenLibraries-Trent-MARCs

Record ID OpenLibraries-Trent-MARCs/tier6.mrc:10423514:2511
Source OpenLibraries-Trent-MARCs
Download Link /show-records/OpenLibraries-Trent-MARCs/tier6.mrc:10423514:2511?format=raw

LEADER: 02511cam 2200349 4500
001 ocm65065422
001 0116405759170
003 OCoLC
005 20080714161132.0
008 060314s2006 njua b 001 0 eng
010 $a 2006043902
035 $a(Sirsi) l2006043902
040 $aDLC$cDLC$dBAKER$dUKM$dC#P$dCOO$dIG#$dYDXCP$dBTCTA$dLMR$dPUL$dOKU$dNOR
015 $aGBA638666$2bnb
016 7 $a013442610$2Uk
020 $a0471794325 (cloth : acid-free paper)
020 $a9780471794325
035 $a(OCoLC)65065422
040 $aOPET$beng
050 00 $aQA248$b.F29 2006
082 00 $a511.3/22$222
100 1 $aFaticoni, Theodore G.$q(Theodore Gerard),$d1954-
245 14 $aThe mathematics of infinity :$ba guide to great ideas /$cTheodore G. Faticoni.
260 $aHoboken, N.J. :$bWiley-Interscience,$cc2006.
300 $axii, 287 p. :$bill. ;$c25 cm.
490 1 $aPure and applied mathematics
504 $aIncludes bibliographical references (p. 283) and index.
505 00 $tPreface --$g1.$tElementary set theory --$g1.1.$tSets --$g1.2.$tCartesian products --$g1.3.$tPower sets --$g1.4.$tSomething from nothing --$g1.5.$tIndexed families of sets --$g2.$tFunctions --$g2.1.$tFunctional preliminaries --$g2.2.$tImages and preimages --$g2.3.$tOne-to-one and onto functions --$g2.4.$tBijections --$g2.5.$tInverse functions --$g3.$tCounting infinite sets --$g3.1.$tFinite sets --$g3.2.$tHilbert's infinite hotel --$g3.3.$tEquivalent sets and cardinality --$g4.$tInfinite cardinals --$g4.1.$tCountable sets --$g4.2.$tUncountable sets --$g4.3.$tTwo infinites --$g4.4.$tPower sets --$g4.5. The$tarithmetic of cardinals --$g5.$tWell ordered sets --$g5.1.$tSuccessors of elements --$g5.2. The$tarithmetic of ordinals --$g5.3.$tCardinals as ordinals --$g5.4.$tMagnitude versus cardinality --$g6.$tInductions and numbers --$g6.1.$tMathematical induction --$g6.2.$tTransfinite induction --$g6.3.$tMathematical recursion --$g6.4.$tNumber theory --$g6.5. The$tfundamental theorem of arithmetic --$g6.6.$tPerfect numbers --$g7.$tPrime numbers --$g7.1.$tPrime number generators --$g7.2. The$tprime number theorem --$g7.3.$tProducts of geometric series --$g7.4. The$tRiemann zeta function --$g7.5.$tReal numbers --$g8.$tLogic and meta-mathematics --$g8.1. The$tcollection of all sets --$g8.2.$tOther than true or false --$tBibliography --$tIndex.
650 0 $aCardinal numbers.
650 0 $aSet theory.
650 0 $aInfinite.
830 0 $aPure and applied mathematics (John Wiley & Sons : Unnumbered)