Record ID | harvard_bibliographic_metadata/ab.bib.00.20150123.full.mrc:706580713:1894 |
Source | harvard_bibliographic_metadata |
Download Link | /show-records/harvard_bibliographic_metadata/ab.bib.00.20150123.full.mrc:706580713:1894?format=raw |
LEADER: 01894pam a2200301 i 4500
001 000850615-9
005 20020606090541.3
008 780501s1979 nyua b 00110 eng
010 $a 78009315
020 $a0471014060
035 0 $aocm03913170
040 $aDLC$cDLC
050 0 $aQA273$b.S698
090 $aQA273.S698X
100 1 $aSpringer, Melvin Dale,$d1918-
245 14 $aThe algebra of random variables /$cM. D. Springer.
260 0 $aNew York :$bWiley,$cc1979.
300 $axix, 470 p. :$bill. ;$c24 cm.
440 0 $aWiley series in probability and mathematical statistics
500 $aIncludes index.
504 $aBibliography: p. 441-461.
505 0 $aIntroduction -- Differentiation and integration in the complex plane -- The distribution of sums and differences of random variables -- The distribution of products and quotients of random variables -- The distribution of algebraic functions of independent random variables -- The distribution of algebraic functions of independent H-function variables -- Analytical model for evaluation of the H-function inversion integral -- Approximating the distribution of an algebraic function of independent random variables -- Distribution problems in statistics -- Appendixes. A. Jordan's lemma -- B. Verification of the conditions of Jordan's lemma for certain specified integrals -- C. Proofs of theorems -- D. Special functions and transforms of basic probability density functions -- E. The complex Fourier or bilateral Laplace transform -- F. Proof of the validity of the residue theorem in evaluating the H-Function inversion integral.
650 0 $aRandom variables.
650 0 $aIntegral transforms.
655 7 $aVerteilung (Mathematik)$2swd
776 08 $iOnline version:$aSpringer, Melvin Dale, 1918-$tAlgebra of random variables.$dNew York : Wiley, ©1979$w(OCoLC)624452549
988 $a20020608
906 $0DLC