It looks like you're offline.
Open Library logo
additional options menu

MARC Record from harvard_bibliographic_metadata

Record ID harvard_bibliographic_metadata/ab.bib.09.20150123.full.mrc:18566062:14865
Source harvard_bibliographic_metadata
Download Link /show-records/harvard_bibliographic_metadata/ab.bib.09.20150123.full.mrc:18566062:14865?format=raw

LEADER: 14865nam a2200445 a 4500
001 009018073-9
005 20030213114220.0
008 020403s2002 ncu b 001 0 eng
010 $a 2002005268
020 $a0786412844 (softcover : alk. paper)
035 0 $aocm49531279
040 $aDLC$cDLC$dDLC
042 $apcc
050 00 $aQA99$b.D53 2002
082 00 $a510$221
245 02 $aA dictionary of quotations in mathematics /$ccompiled and edited by Robert A. Nowlan.
260 $aJefferson, N.C. :$bMcFarland,$cc2002.
300 $axiv, 314 p. ;$c26 cm.
504 $aIncludes bibliographical references (p. 265-295) and indexes.
505 00 $tAcknowledgments --$tPreface --$g[pt]. 1.$tThe God hypothesis, religion and mathematics --$g1.$tIn the beginning : God the creator --$g2.$tThe mathematical nature of God --$g3.$tDiscovering God's thoughts --$g4.$tMathematical evidence of the existence of God --$g5.$tGod's universe -- playing dice or order and harmony? --$g6.$tReligion, theology and mathematics --$g[pt]. 2.$tThe nature of mathematics 1 --$g1.$tWhat is mathematics? --$g2.$tThe essence of mathematics --$g3.$tCharacteristics of mathematics --$g4.$tMathematics is ... --$g5.$tMathematics as an intellectual activity --$g6.$tAnalogies of mathematics --$g7.$tMathematics as a tool --$g8.$tThe misunderstanding of the nature of mathematics --$g9.$tOther views of the nature of mathematics --$g10.$tMathematics as art --$g11.$tmathematics as a game --$g12.$tMathematics as language.
505 00 $g[pt]. 3.$tThe nature of mathematics 2 --$g1.$tMathematics as science --$g2.$tAppreciation for mathematics --$g3.$tAptitude for mathematics --$g4.$tThe attraction of mathematics --$g5.$tIgnorance of mathematics --$g6.$tMathematics and the imagination --$g7.$tMathematical ideals and idealization --$g[pt]. 4.$tThe development of mathematics 1 --$g1.$tGrowth of new mathematical ideas --$g2.$tThe process of mathematical development --$g3.$tMathematical thinking --$g4.$tIntuition --$g5.$tExperiments and empiricism --$g6.$tInduction --$g7.$tDeduction --$g[pt]. 5.$tThe development of mathematics 2 --$g1.$tDefinitions --$g2.$tHypothesis in mathematics --$g3.$tMathematical analogies --$g4.$tAbstraction --$g5.$tGeneral principles and generalizations --$g6.$tRevolutions in mathematics --$g7.$tModern mathematics.
505 00 $g[pt]. 6.$tThe Historical origins of mathematics --$g1.$tHistory of mathematics --$g2.$tOriental mathematics --$g3.$tEgyptian mathematics --$g4.$tSumerian and Babylonian mathematics --$g5.$tChinese mathematics --$g6.$tJapanese mathematics --$g7.$tMayan mathematics --$g8.$tGreek mathematics --$g9.$tRoman mathematics --$g10.$tHindu mathematics --$g11.$tArabic mathematics --$g12.$tHindu-Arabic numerals --$g13.$tDecimal system of numeration --$g14.$tThe rebirth of mathematics in the West --$g[pt]. 7.$tLanguage, e linguistics and mathematics --$g1.$tRhetoric and mathematics --$g2.$tMaking explanations --$g3.$tLanguage and mathematics --$g4.$tThe science of mathematical linguistics --$g5.$tMathematical notation --$g6.$tMathematical symbols and symbolic language --$g7.$tMathematical terminology --$g[pt]. 8.$tMathematics : creation, discovery or invention? --$g1.$tCreating mathematics --$g2.$tDiscovering mathematics --$g3.$tInventing mathematics --$g4.$tMathematical existence --$g5.$tDiscovering mathematical patterns --$g6.$tPrinciples of mathematics --$g7.$tMathematical structures --$g8.$tmathematical reasoning.
505 00 $g[pt]. 9.$tThe sciences and mathematics I --$g1.$tThe relationship between science and mathematics --$g2.$tExperimentation --$g3.$tExperience --$g4.$tPhysics and mathematics --$g5.$tMechanics --$g[pt]. 10.$tThe sciences and mathematics II --$g1.$tGravity and gravitation --$g2.$tRelativity --$g3.$tQuantum theory --$g4.$tAstronomy and mathematics --$g5.$tThe sun and other stars --$g6.$tBiology, medicine, chemistry and mathematics --$g[pt]. 11.$tMathematics and the arts --$g1.$tAesthetics : mathematical beauty --$g2.$tHarmony and order --$g3.$tProportion --$g4.$tSymmetry --$g5.$tThe arts and mathematics --$g6.$tArchitecture and mathematics --$g7.$tMusic and mathematics --$g8.$tPainting and mathematics --$g9.$tPerspective --$g10.$tPoetry and mathematics --$g11.$tStories, myth and mysticism --$g[pt]. 12.$tMathematics and the social sciences --$g1.$tSocial sciences : sociology, anthropology and mathematics --$g2.$tEconomics and mathematics --$g3.$tPsychology and mathematics --$g4.$tGame theory.
505 00 $g[pt]. 13.$tTeaching and learning mathematics --$g1.$tThe importance of examples --$g2.$tLearning and mathematics --$g3.$tLectures and lecturing --$g4.$tClarity in teaching and learning mathematics --$g5.$tOn writing mathematics --$g6.$gReading and mathematics --$g7.$tThe study of mathematics --$g8.$tTeaching and mathematics --$g9.$tProfessors, universities and mathematics --$g[pt]. 14.$tThe nature of infinity --$g1.$tUnderstanding infinity --$g2.$tThe infinite and the finite --$g3.$tNumbers and infinity --$g4.$tThe infinitely large : the infinitely small --$g5.$tFear and loathing of infinity --$g6.$tTheories of infinity --$g7.$tNature and infinity --$g8.$tInfinity is ... definitions, sort of --$g[pt]. 15.$tPure mathematics and applied mathematics --$g1.$tApplied mathematics and mathematicians --$g2.$tPure mathematics and mathematicians --$g3.$tDifferences between pure and applied mathematics --$g4.$tPartnership of pure and applied mathematics --$g5.$tUses and usefulness of mathematics --$g6.$tValues of mathematics.
505 00 $g[pt]. 16.$tMathematicians --$g1.$tMathematicians on mathematicians --$g2.$tNon-mathematicians on mathematicians --$g3.$tWomen an mathematics --$g[pt]. 17.$tSome mathematical people 1 --$g1.$tNiels Abel --$g2.$tmaria Gaetana Agnesi --$g3.$tIbn Musa al-Khowarizmi --$g4.$tApollonius of Perga --$g5.$tArchimedes of Syracuse --$g6.$tCharles Babbage --$g7.$tDaniel Bernoulli --$g8.$tJacob Bernoulli --$g9.$tJohann Bernoulli --$g10.$tGeorge David Birkhoff --$g11.$tRalph Boas, Jr. --$g12.$tJanos Bolyai --$g13.$tBernard Bolzano --$g14.$tGeorge Boole --$g15.$t"Nicolas Bourbaki" --$g16.$tGeorg Cantor --$g17.$tGirolamo Cardano --$g18.$t:Lewis Carroll" -- Charles Lutwidge Dodgson --$g19.$tAugustin-Louis Cauchy --$g20.$tArthur Cayley --$g21.$tEmilie de Breteuil, Marquise du Chatelet --$g22.$tWilliam Kingdon Clifford --$g23.$tNicolaus Copernicus --$g24.$tJean Le Rond d'Alembert --$g25.$tJulius Wilhelm Richard Dedekind --$g26.$tRene Descartes --$g27.$tDiophantus --$g28.$tPaul Erdos --$g29.$tEuclid --$g30.$tLeonhard Euler.
505 00 $g[pt]. 18.$tSome mathematical people 2 --$g1.$tPierre Fermat --$g2.$tJoseph Fourier --$g3.$tGottlob Frege --$g4.$tGalileo Galilei --$g5.$tEvariste Galois --$g6.$tCarl Friedrich Gauss --$g7.$tSophie Germain --$g8.$tKurt Goedel --$g9.$tJohn Graunt --$g10.$tSir William Rowan Hamilton --$g11.$tGodfrey H. Hardy --$g12.$tHermann von Helmholtz --$g13.$tCharles Hermite --$g14.$tDavid Hilbert --$g15.$tHipparchus of Rhodes --$g16.$tChristiaan Huygens --$g17.$tHypatia --$g18.$tJohannes Kepler --$g19.$tOmar Khayyam --$g20.$tFelix Klein --$g21.$tSonja Sophie Kovalevsky --$g22.$tLeopold Kronecker --$g23.$tJoseph-Louis Lagrange --$g24.$tImre Lakatos --$g25.$tPierre-Simon de Laplace --$g26.$tHenri Lebesque --$g27.$tSolomon Lefschetz --$g28.$tAdrien-Marie Legendre --$g29.$tGottfried Wilhelm von Leibniz --$g30.$tMarius Sophus Lie --$g31.$tJohn Edensor Littlewood --$g32.$tNikolai Lobachevski --$g33.$tGosta Magnus Mittag-Leffler --$g34.$tGaspard Monge --$g35.$tJohn Napier.
505 00 $g[pt]. 19.$tSome mathematical people 3 --$g1.$tSir Isaac Newton --$g2.$tEmmy Noether --$g3.$tPappus --$g4.$tBlaise Pascal --$g5.$tBenjamin Peirce --$g6.$tCharles Sanders Peirce --$g7.$tJules Henri Poincare --$g8.$tGeorge Polya --$g9.$tPtolemy --$g10.$tPythagoras and the Pythagoreans --$g11.$tSrinivasa Ramanujan --$g12.$tRobert Recorde --$g13.$tGeorge Friedrich Bernhard Riemannn --$g14.$tLord Bertrand Russell --$g15.$tTakakazu Seki (Kowa) --$g16.$tMary Somerville --$g17.$tHugo Steinhaus --$g18.$tJames Joseph Sylvester --$g19.$tThales --$g20.$tAlan Turing --$g21.$tStanislaw Ulam --$g22.$tJohn Von Neumann --$g23.$tKarl Weierstrass --$g24.$tAlfred North Whitehead --$g25.$tNorbert Wiener --$g26.$tChristopher Wren --$g27.$tZeno of Elea --$g[pt]. 20.$tProblems and problem solving --$g1.$tThe three problems of antiquity --$g2.$tFermat's last theorem --$g3.$tOther mathematical problems --$g4.$tPosing mathematical problems and questions --$g5.$tComplicated and unsolved problems --$g6.$tSolving problems --$g7.$tLearning and teaching problem solving --$g8.$tPuzzles.
505 00 $g[pt]. 21.$tMathematics and nature --$g1.$tNature interpreted by mathematics --$g2.$tLaws of mathematics --$g3.$tLaws of motion --$g4.$tLaws of nature --$g[pt]. 22.$tPhilosophy, mathematics, truth and certainty --$g1.$tPhilosophy and mathematics --$g2.$tPhilosophy of mathematics --$g3.$tMetaphysics and metamathematics --$g4.$tThe nature of mathematical truth --$g5.$tThe certainty of mathematics --$g[pt]. 23.$tLogic and foundations --$g1.$tThe nature of logic --$g2.$tSymbolic logic --$g3.$tLogic and mathematics --$g4.$tCommon sense --$g5.$tPostulates, axioms and the axiomatic method --$g6.$tThe possible and the impossible --$g7.$tContradictions and paradoxes --$g8.$tSyllogisms and validity --$g9.$tFoundations of mathematics --$g[pt]. 24.$tProof and mathematics --$g1.$tMathematical arguments --$g2.$tMathematical demonstrations --$g3.$tCause and effect --$g4.$tThe role of assumptions in mathematics --$g5.$tThat which is obvious --$g6.$tThe nature of proof --$g7.$tMathematical proofs --$g8.$tRigor in mathematical proofs --$g9.$tElegant mathematical proofs --$g10.$tmathematical propositions and theorems.
505 00 $g[pt]. 25.$tSets, relations and functions --$g1.$tSets and set theory --$g2.$tEquality and equivalence --$g3.$tMathematical relations --$g4.$tFunctions and function theory --$g5.$tSpecial functions --$g[pt]. 26.$tSpace : real and idealized --$g1.$tReal and mathematical space --$g2.$tCurvature of space --$g3.$tThe universe --$g4.$tThe world --$g[pt]. 27.$tNumbers : the heart of mathematics --$g1.$tThe nature and development of numbers --$g2.$tNumber in verse --$g3.$tThe notion of quantity --$g4.$tCardinal and ordinal numbers --$g5.$tCounting --$g6.$tWhole numbers -- natural numbers --$g7.$tFractions --$g8.$tNegative numbers --$g9.$tIntegers --$g10.$tIrrational numbers --$g11.$tZero.
505 00 $g[pt]. 28.$tNumbers and number theory --$g1.$tEven and odd numbers --$g2.$tReal and rational numbers --$g3.$tImaginary numbers --$g4.$tComplex numbers --$g5.$tAlgebraic and transcendental numbers --$g6.$t"e" --$g7.$t"pi" --$g8.$tQuaternions --$g9.$tTransfinite numbers --$g10.$tNumber theory --$g11.$tContinued fractions --$g12.$tDivisibility --$g13.$tPerfect numbers --$g14.$tPrime numbers --$g15.$tMagic squares --$g16.$tBistromathics --$g[pt]. 29.$tArithmetic --$g1.$tThe nature of arithmetic --$g2.$tThe fundamental operations of arithmetic --$g3.$tCalculation and computation --$g4.$tLogarithms --$g[pt]. 30.$tAlgebra and trigonometry --$g1.$tElementary algebra --$g2.$tExponents --$g3.$tFormulas --$g4.$tUnknowns and variables --$g5.$tEquations and their solutions --$g6.$tFundamental theorem of algebra --$g7.$tTrigonometry --$g8.$tAbstract algebra --$g9.$tLinear algebra --$g10.$tGroups and group theory --$g11.$tTransformation groups --$g12.$tInvariants of groups.
505 00 $g[pt]. 31.$tThe art of measurement --$g1.$tMeasure and measurement --$g2.$tMeasurement and mathematics --$g3.$tWeights and measures --$g4.$tThe measurable and the unmeasurable --$g5.$tMeasurement inverse --$g6.$tLength, area and volume --$g7.$tMeasuring devices and techniques --$g8.$tApproximations --$g9.$tLongitude and latitude --$g10.$tThe metric system --$g11.$tTime --$g[pt]. 32.$tGeometry 1 --$g1.$tThe history of geometry --$g2.$tThe science of geometry --$g3.$tGeometry and art --$g4.$tPoints, lines and planes --$g5.$tCommensurability --$g6.$tCurves --$g7.$tSize and shapes --$g8.$tGeometric constructions --$g9.$tAngles and triangles --$g10.$tPolygons and polyhedrons --$g11.$tCircles --$g12.$tThe other conic sections --$g13.$tSpheres --$g14.$tSolid geometry.
505 00 $g[pt. 33].$tGeometry 2 --$g1.$tPythagorean theorem --$g2.$tFlatland --$g3.$tDimensions and dimension theory --$g4.$tAnalytic or analytical geometry --$g5.$tAlgebraic geometry --$g6.$tDifferential geometry --$g7.$tDistance -- metric geometry --$g8.$tParallel lines and the parallel postulate --$g9.$tNon-Euclidean geometry --$g10.$tProjection --$g11.$tProjective geometry --$g12.$tDuality --$g13.$tModern geometry --$g14.$tChaos --$g15.$tFractal geometry --$g[pt]. 24.$tTopology and graph theory --$g1.$tOrigins of analysis situs [topology] --$g2.$tThe nature of topology --$g3.$tRubber sheet geometry --$g4.$tSet-theoretic topology --$g5.$tTopology, algebra and algebraic topology --$g6.$tKönigsberg bridge problem --$g7.$tGraph theory --$g8.$tThe Moebius strop --$g9.$tThe Klein bottle --$g10.$tFour color problem --$g11.$tKnot theory.
505 00 $g[pt]. 35.$tAnalysis and calculus --$g1.$tAnalytical methods in mathematics --$g2.$tCalculus of variations --$g3.$tContinuity --$g4.$tInfinitesimals --$g5.$tThe limit concept --$g6.$tThe calculus --$g7.$tDerivatives and differentiation --$g8.$tMaximum and minimum values --$g9.$tMean value theorem --$g10.$tIntegrals and integration --$g11.$tSeries --$g12.$tDifferential equations --$g[pt]. 36.$tComputers, algorithms and mathematical models --$g1.$tThe history and development of computers --$g2.$tComputers and mathematics --$g3.$tHumans and machines --$g4.$tMiscellaneous views of computers --$g5.$tCybernetics --$g6.$tCombinatorics and combinatorial analysis --$g7.$tAlgorithms --$g8.$tLinear programming --$g9.$tOperations research --$g10.$tMathematical models.
505 00 $g[pt]. 37.$tThe theory of probability --$g1.$tCalculating probabilities --$g2.$tProbability, ignorance and certainty --$g3.$tMiscellaneous views of probability --$g4.$tChance --$g5.$tGambling --$g6.$tPermutations and combinations --$g7.$tDiscrete mathematics --$g8.$tMaking predictions --$g[pt]. 38.$tStatistics and statisticians --$g1.$tStatisticans --$g2.$tThe science of statistics --$g3.$tStatistics and lies --$g4.$tMiscellaneous views on statistics --$g5.$tSamples and sampling --$g6.$tData --$g7.$tAverage values --$g8.$tDecison-making --$tBibliography --$tAuthor index --$tKeyword index.
520 $aPresents nearly three thousand quotations from the history of mathematics, arranged in thirty-eight categories including the God hypothesis, the origins of mathematics, mathematical people, and philosophy.
650 0 $aMathematics$vQuotations, maxims, etc.
655 7 $aQuotations.$2fast
700 1 $aNowlan, Robert A.
988 $a20021126
906 $0DLC