Record ID | harvard_bibliographic_metadata/ab.bib.11.20150123.full.mrc:660972:3417 |
Source | harvard_bibliographic_metadata |
Download Link | /show-records/harvard_bibliographic_metadata/ab.bib.11.20150123.full.mrc:660972:3417?format=raw |
LEADER: 03417cam a2200313Ia 4500
001 011000572-4
005 20071218175209.0
008 070706s2007 nyua b 001 0 eng d
010 $a 2007926587
020 $a038771717X
020 $a9780387717173
035 0 $aocn153576634
040 $aYDXCP$cYDXCP$dBTCTA$dBAKER$dOHX$dMTG$dEMU
050 4 $aTS157.5$b.J87 2007
082 04 $a658.53$222
245 00 $aJust-in-time scheduling :$bmodels and algorithms for computer and manufacturing systems /$cedited by Joanna Józefowska.
260 $aNew York :$bSpringer,$cc2007.
300 $axiii, 255 p. :$bill. ;$c25 cm.
440 0 $aInternational series in operations research & management science ;$v106
500 $aSeries number from p. [4] of cover.
504 $aIncludes bibliographical references (p. [235]-251) and index.
505 0 $a1. Just-in-time concept in manufacturing and computer systems -- 1.1. Manufacturing systems -- 1.1.1. Production planning and control -- 1.1.2. Just-in-time systems -- 1.1.3. Balanced schedules -- 1.1.4. Earliness and tardiness cost -- 1.2. Computer systems -- 1.2.1. Real-time systems -- 1.2.2. Hard real-time systems -- 1.2.3. Soft real-time systems -- 2. Methodological background -- 2.1. Deterministic scheduling theory -- 2.1.1. Basic definitions -- 2.1.2. Earliness and tardiness cost functions -- 2.1.3. Scheduling algorithms and computational complexity -- 2.2. The Theory of Apportionment -- 2.2.1. Problem formulation -- 2.2.2. Divisor methods -- 2.2.3. Staying within the quota -- 2.2.4. Impossibility Theorem -- 3. Common due date -- 3.1. Linear cost functions -- 3.1.1. Mean Absolute Deviation -- 3.1.2. Weighted Sum of Absolute Deviations -- 3.1.3. Symmetric weights -- 3.1.4. Total Weighted Earliness and Tardiness -- 3.1.5. Controllable due date -- 3.1.6. Controllable processing times -- 3.1.7. Resource dependent ready times -- 3.1.8. Common due window -- 3.2. Quadratic cost function -- 3.2.1. Completion Time Variance -- 3.2.2. Restricted MSD problem -- 3.2.3. Other models -- 4. Individual due dates -- 4.1. Schedules with idle time -- 4.1.1. Arbitrary weights -- 4.1.2. Proportional weights -- 4.1.3. Mean absolute lateness -- 4.1.4. Maximizing the number of just-in-time tasks -- 4.1.5. Minimizing the maximum earliness/tardiness cost -- 4.1.6. Scheduling with additional resources -- 4.1.7. Other models -- 4.2. Schedules without idle time -- 4.2.1. Arbitrary weights -- 4.2.2. Task independent weights -- 4.3. Controllable due dates -- 4.3.1. TWK due date model -- 4.3.2. SLK due date model -- 4.3.3. Scheduling with batch setup times -- 5. Algorithms for schedule balancing.
505 0 $a5.1. The multi-level scheduling problem -- 5.1.1. Problem formulation -- 5.1.2. Minimizing the maximum deviation -- 5.1.3. Minimizing the total deviation -- 5.2. The single-level scheduling problem -- 5.2.1. Problem formulation -- 5.2.2. Minimizing the maximum deviation -- 5.2.3. Minimizing the total deviation -- 5.2.4. Cyclic sequences -- 5.2.5. Transformation of the PRV problem to the apportionment problem -- 5.3. Scheduling periodic tasks -- 5.3.1. Problem formulation -- 5.3.2. Scheduling algorithms -- 5.3.3. Properties of feasible schedules.
650 0 $aProduction scheduling$xMathematical models.
650 0 $aJust-in-time systems.
650 0 $aBusiness logistics.
700 1 $aJózefowska, Joanna.
988 $a20070907
906 $0OCLC