Record ID | harvard_bibliographic_metadata/ab.bib.11.20150123.full.mrc:808369207:3459 |
Source | harvard_bibliographic_metadata |
Download Link | /show-records/harvard_bibliographic_metadata/ab.bib.11.20150123.full.mrc:808369207:3459?format=raw |
LEADER: 03459cam a2200481 a 4500
001 011906728-5
005 20140919110146.0
008 080304s2008 gw a b 001 0 eng
015 $aGBA854944$2bnb
016 7 $a014584518$2Uk
020 $a9783540344667 (hbk.)
020 $a3540344667 (hbk.)
020 $a9783540344674 (ebk.)
035 0 $aocn222164146
040 $aUKM$cUKM$dYDXCP$dBTCTA$dBAKER$dOCLCG$dOHX$dOCLCQ
050 4 $aQA377$b.R66 2008
082 04 $a518.63$222
100 1 $aRoos, Hans-Görg,$d1949-
245 10 $aRobust numerical methods for singularly perturbed differential equations :$bconvection-diffusion-reaction and flow problems /$cHans-Görg Roos, Martin Stynes, Lutz Tobiska.
250 $a2nd ed.
260 $aBerlin :$bSpringer,$cc2008.
300 $axiv, 604 p. :$bill. ;$c25 cm.
490 1 $aSpringer series in computational mathematics,$x0179-3632 ;$v24
500 $aRev. ed. of: Numerical methods for singularly perturbed differential equations : convection-diffusion and flow problems / H.-G. Roos, M. Stynes, L. Tobiska. c1996.
504 $aIncludes bibliographical references (p. [551]-597) and index.
505 0 $aOrdinary Differential Equations -- The Analytical Behaviour of Solutions -- Numerical Methods for Second-Order Boundary Value Problems -- Parabolic Initial-Boundary Value Problems in One Space Dimension -- Analytical Behaviour of Solutions -- Finite Difference Methods -- Finite Element Methods -- Two Adaptive Methods -- Elliptic and Parabolic Problems in Several Space Dimensions -- Analytical Behaviour of Solutions -- Finite Difference Methods -- Finite Element Methods -- Time-Dependent Problems -- The Incompressible Navier-Stokes Equations -- Existence and Uniqueness Results -- Upwind Finite Element Method -- Higher-Order Methods of Streamline Diffusion Type -- Local Projection Stabilization for Equal-Order Interpolation -- Local Projection Method for Inf-Sup Stable Elements -- Mass Conservation for Coupled Flow-Transport Problems -- Adaptive Error Control.
520 $aThis considerably extended and completely revised second edition incorporates many new developments in the thriving field of numerical methods for singularly perturbed differential equations. It provides a thorough foundation for the numerical analysis and solution of these problems, which model many physical phenomena whose solutions exhibit layers. The book focuses on linear convection-diffusion equations and on nonlinear flow problems that appear in computational fluid dynamics. It offers a comprehensive overview of suitable numerical methods while emphasizing those with realistic error estimates. The book should be useful for scientists requiring effective numerical methods for singularly perturbed differential equations.
650 0 $aDifferential equations$xNumerical solutions.
650 0 $aSingular perturbations (Mathematics)
650 0 $aBiology$xMathematics.
650 0 $aChemistry.
650 0 $aEngineering mathematics.
650 0 $aMathematical physics.
650 0 $aMathematics.
650 0 $aNumerical analysis.
650 0 $aStatistics.
700 1 $aStynes, M.$q(Martin),$d1951-
700 1 $aTobiska, L.$q(Lutz),$d1950-
700 1 $aRoos, Hans-Görg,$d1949-$tNumerical methods for singularly perturbed differential equations.
830 0 $aSpringer series in computational mathematics ;$v24.
988 $a20090326
049 $aMCSS
906 $0OCLC