Record ID | harvard_bibliographic_metadata/ab.bib.12.20150123.full.mrc:581772424:3036 |
Source | harvard_bibliographic_metadata |
Download Link | /show-records/harvard_bibliographic_metadata/ab.bib.12.20150123.full.mrc:581772424:3036?format=raw |
LEADER: 03036cam a22005774a 4500
001 012714125-1
005 20131119022820.0
008 020918s2003 gw a b 001 0 eng
010 $a 2002034350
016 7 $a965260712$2DE-101
020 $a3540440593 (pbk. : alk. paper)
020 $a9783540440598 (pbk. : alk. paper)
035 0 $aocm50695398
040 $aDLC$beng$cDLC$dYDX$dOHX$dMUQ$dBAKER$dSTF$dBTCTA$dYDXCP$dOCLCG$dIG#$dHEBIS$dDEBBG$dOCL
042 $apcc
050 00 $aQC20.7.M24$bG76 2003
072 7 $aQA$2lcco
082 00 $a516.3/62$221
084 $aMAT 530f$2stub
084 $aSD 2001$2rvk
084 $aSK 370$2rvk
084 $aSK 780$2rvk
100 1 $aGross, M. W.$q(Mark W.),$d1965-
245 10 $aCalabi-Yau manifolds and related geometries :$blectures at a summer school in Nordfjordeid, Norway, June 2001 /$cM. Gross, D. Huybrechts, D. Joyce.
260 $aBerlin ;$aNew York :$bSpringer,$cc2003.
300 $aviii, 239 p. :$bill. ;$c24 cm.
490 1 $aUniversitext
504 $aIncludes bibliographical references (p. [227]-236) and index.
505 0 $aI. Riemannian holonomy groups and calibrated geometry by Dominic Joyce -- II. Calabi-Yau manifolds and mirror symmetry by Mark Gross -- III. Compact hyperkahler manifolds by Daniel Huybrechts -- References -- Index.
520 $aThis book is an expanded version of lectures given at a summer school on symplectic geometry in Nordfjordeid, Norway, in June 2001. The unifying feature of the book is an emphasis on Calabi-Yau manifolds. The first part discusses holonomy groups and calibrated submanifolds, focusing on special Lagrangian submanifolds and the SYZ conjecture. The second studies Calabi-Yau manifolds and mirror symmetry, using algebraic geometry. The final part describes compact hyperkahler manifolds, which have a geometric structure very closely related to Calabi-Yau manifolds. The book is an introduction to a very active field of research, on the boundary between mathematics and physics. It is aimed at graduate students and researchers in geometry and string theory and intended as an introductory text, requiring only limited background knowledge. Proofs or sketches are given for many important results. Moreover, exercises are provided.
650 0 $aCalabi-Yau manifolds.
650 0 $aMathematical physics.
650 6 $aCalabi-Yau, Variétés de.
650 6 $aPhysique mathématique.
650 07 $aHyper-Kähler-Geometrie.$2swd
650 07 $aSpiegelsymmetrie.$2swd
650 07 $aAlgebraische Geometrie.$2swd
650 07 $aSymplektische Geometrie.$2swd
650 07 $aCalabi-Yau-Mannigfaltigkeit.$2swd
650 07 $aKompakte Kähler-Mannigfaltigkeit.$2swd
655 7 $aNordfjordeid (2001)$2swd
650 0 $aMathematics.
650 0 $aGeometry, algebraic.
650 0 $aGlobal differential geometry.
650 0 $aTopology.
700 1 $aHuybrechts, Daniel.
700 1 $aJoyce, Dominic D.
830 0 $aUniversitext.
988 $a20110315
049 $aCLSL
906 $0DLC