Record ID | harvard_bibliographic_metadata/ab.bib.12.20150123.full.mrc:638465082:1451 |
Source | harvard_bibliographic_metadata |
Download Link | /show-records/harvard_bibliographic_metadata/ab.bib.12.20150123.full.mrc:638465082:1451?format=raw |
LEADER: 01451cam a2200361 a 4500
001 012766101-8
005 20110603192415.0
008 100316s2010 enka b 001 0 eng
015 $aGBB046070$2bnb
016 7 $a015522243$2Uk
020 $a9780521197984 (hbk.)
020 $a0521197988 (hbk.)
020 $a9780521147354 (pbk.)
020 $a0521147352 (pbk.)
035 0 $aocn607985577
040 $aUKM$cUKM$dBTCTA$dYDXCP$dBWK$dCDX$dLGG$dBWX$dSAC$dUPP
042 $aukblcatcopy
050 4 $aQA166$b.G75 2010
082 04 $a511.5$222
100 1 $aGrimmett, Geoffrey.
245 10 $aProbability on graphs :$brandom processes on graphs and lattices /$cGeoffrey Grimmett.
260 $aCambridge ;$aNew York :$bCambridge University Press,$cc2010.
300 $axi, 247 p. :$bill. ;$c23 cm.
490 1 $aInstitute of Mathematical Statistics textbooks ;$v1
504 $aIncludes bibliographical references: (p. 226-242) and index.
505 0 $aRandom walks on graphs -- Uniform spanning tree -- Percolation and self-avoiding walk -- Association and influence -- Further percolation -- Contact process -- Gibbs states -- Random-cluster model -- Quantum Ising model -- Interacting particle systems -- Random graphs -- Lorentz gas.
650 0 $aGraph theory.
650 0 $aProbabilities.
830 0 $aInstitute of Mathematical Statistics textbooks ;$v1.
899 $a415_356033
988 $a20110509
049 $aCLSL
906 $0OCLC