It looks like you're offline.
Open Library logo
additional options menu

MARC Record from harvard_bibliographic_metadata

Record ID harvard_bibliographic_metadata/ab.bib.12.20150123.full.mrc:830459540:1963
Source harvard_bibliographic_metadata
Download Link /show-records/harvard_bibliographic_metadata/ab.bib.12.20150123.full.mrc:830459540:1963?format=raw

LEADER: 01963cam a2200361Ia 4500
001 012941280-5
005 20140910154321.0
008 110619s2011 gw a b 001 0 eng d
020 $a9783642205538
020 $a3642205534
035 0 $aocn731922793
040 $aBTCTA$beng$cBTCTA$dYDXCP$dOHX$dBWX$dIXA$dCDX$dMUU
050 4 $aQA331$b.F74 2011
082 04 $a515/.9$223
100 1 $aFreitag, E.$q(Eberhard)
245 10 $aComplex analysis 2 :$bRiemann surfaces, several complex variables, abelian functions, higher modular functions /$cEberhard Freitag.
246 3 $aComplex analysis two
260 $aHeidelberg ;$aNew York :$bSpringer,$cc2011.
300 $axiii, 506 p. :$bill. ;$c24 cm.
490 1 $aUniversitext
504 $aIncludes bibliographical references (p. 494-498) and index.
505 0 $aCh. I. Riemann surfaces -- Ch. II. Harmonic functions on Riemann surfaces -- Ch. III. Uniformization -- Ch. IV. Compact Riemann surfaces -- Ch. V. Analytic functions of several complex variables -- Ch. VI. Abelian functions -- Ch. VII. Modular forms of several variables -- Ch. VIII. Appendix: algebraic tools.
520 $aThe book provides a complete presentation of complex analysis, starting with the theory of Riemann surfaces, including uniformization theory and a detailed treatment of the theory of compact Riemann surfaces, the Riemann-Roch theorem, Abel's theorem and Jacobi's inversion theorem. This motivates a short introduction into the theory of several complex variables, followed by the theory of Abelian functions up to the theta theorem. The last part of the book provides an introduction into the theory of higher modular functions.
650 0 $aFunctions of complex variables.
650 0 $aRiemann surfaces.
650 0 $aTopology.
650 0 $aDifferential equations, partial.
650 0 $aMathematics.
830 0 $aUniversitext.
899 $a415_565004
988 $a20111012
049 $aCLSL
906 $0OCLC