Record ID | harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:1095810670:3304 |
Source | harvard_bibliographic_metadata |
Download Link | /show-records/harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:1095810670:3304?format=raw |
LEADER: 03304cam a2200469 i 4500
001 013951303-5
005 20140411192414.0
008 130813s2014 riu b 001 0 eng
010 $a 2013032423
020 $a9780821898833 (alk. paper)
020 $a0821898833 (alk. paper)
035 $a(PromptCat)99957423711
035 0 $aocn855858285
040 $aDLC$beng$erda$cDLC$dYDX$dBTCTA$dYDXCP$dOCLCO
041 1 $aeng$hger
042 $apcc
050 00 $aQA241$b.R45813 2014
082 00 $a512.7/2$223
084 $a11-01$a11-02$a11Axx$a11Y11$a11Y16$2msc
100 1 $aRempe-Gillen, Lasse,$d1978-$eauthor.
240 10 $aPrimzahltests für Einsteiger.$lEnglish
245 10 $aPrimality testing for beginners /$cLasse Rempe-Gillen, Rebecca Waldecker.
264 1 $aProvidence, Rhode Island :$bAmerican Mathematical Society,$c[2014]
300 $axii, 244 pages ;$c22 cm.
336 $atext$2rdacontent
337 $aunmediated$2rdamedia
338 $avolume$2rdacarrier
490 1 $aStudent mathematical library ;$vvolume 70
500 $aTranslation of: Primzahltests für Einsteiger : Zahlentheorie - Algorithmik - Kryptographie.
504 $aIncludes bibliographical references and index.
505 0 $aMachine generated contents note: ch. 1 Natural numbers and primes -- 1.1.The natural numbers -- 1.2.Divisibility and primes -- 1.3.Prime factor decomposition -- 1.4.The Euclidean algorithm -- 1.5.The Sieve of Eratosthenes -- 1.6.There are infinitely many primes -- Further reading -- ch. 2 Algorithms and complexity -- 2.1.Algorithms -- 2.2.Decidable and undecidable problems -- 2.3.Complexity of algorithms and the class P -- 2.4.The class NP -- 2.5.Randomized algorithms -- Further reading -- ch. 3 Foundations of number theory -- 3.1.Modular arithmetic -- 3.2.Fermat's Little Theorem -- 3.3.A first primality test -- 3.4.Polynomials -- 3.5.Polynomials and modular arithmetic -- Further reading -- ch. 4 Prime numbers and cryptography -- 4.1.Cryptography -- 4.2.RSA -- 4.3.Distribution of primes -- 4.4.Proof of the weak prime number theorem -- 4.5.Randomized primality tests -- Further reading -- ch. 5 The starting point: Fermat for polynomials -- 5.1.A generalization of Fermat's Theorem -- 5.2.The idea of the AKS algorithm -- 5.3.The Agrawal-Biswas test -- ch. 6 The theorem of Agrawal, Kayal, and Saxena -- 6.1.Statement of the theorem -- 6.2.The idea of the proof -- 6.3.The number of polynomials in P -- 6.4.Cyclotomic polynomials -- ch. 7 The algorithm -- 7.1.How quickly does the order of n modulo r grow? -- 7.2.The algorithm of Agrawal, Kayal, and Saxena -- 7.3.Further comments -- Further reading -- Further reading.
650 7 $aNumber theory -- Research exposition (monographs, survey articles)$2msc
650 7 $aNumber theory -- Instructional exposition (textbooks, tutorial papers, etc.)$2msc
650 0 $aNumber theory.
650 7 $aNumber theory -- Elementary number theory -- Elementary number theory.$2msc
650 7 $aNumber theory -- Computational number theory -- Primality.$2msc
650 7 $aNumber theory -- Computational number theory -- Algorithms; complexity.$2msc
700 1 $aWaldecker, Rebecca,$d1979-$eauthor.
830 0 $aStudent mathematical library ;$vv. 70.
899 $a415_565982
988 $a20140304
906 $0DLC