Record ID | harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:729736589:5389 |
Source | harvard_bibliographic_metadata |
Download Link | /show-records/harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:729736589:5389?format=raw |
LEADER: 05389nam a22006255a 4500
001 013672486-8
005 20130614191328.0
008 130109s2013 gw | s ||0| 0|eng d
020 $a9783642359750
020 $a9783642359750
020 $a9783642359743
024 7 $a10.1007/978-3-642-35975-0$2doi
035 $a(Springer)9783642359750
040 $aSpringer
050 4 $aQ334-342
050 4 $aTJ210.2-211.495
072 7 $aUYQ$2bicssc
072 7 $aTJFM1$2bicssc
072 7 $aCOM004000$2bisacsh
082 04 $a006.3$223
100 1 $aBobillo, Fernando.
245 10 $aUncertainty Reasoning for the Semantic Web II :$bInternational Workshops URSW 2008-2010 Held at ISWC and UniDL 2010 Held at FLoC, Revised Selected Papers /$cedited by Fernando Bobillo, Paulo C. G. Costa, Claudia d’Amato, Nicola Fanizzi, Kathryn B. Laskey, Kenneth J. Laskey, Thomas Lukasiewicz, Matthias Nickles, Michael Pool.
260 $aBerlin, Heidelberg :$bSpringer Berlin Heidelberg :$bImprint: Springer,$c2013.
300 $aXVI, 331 p. 72 illus.$bdigital.
490 0 $aLecture Notes in Computer Science,$x0302-9743 ;$v7123
505 0 $aPR-OWL 2.0 – Bridging the Gap to OWL Semantics.- Probabilistic Ontology and Knowledge Fusion for Procurement Fraud Detection in Brazil --
505 0 $aUnderstanding a Probabilistic Description Logic via Connections to First-Order Logic of Probability.- Pronto: A Practical Probabilistic Description Logic Reasoner.- Instance-Based Non-standard Inferences in EL with Subjective Probabilities.- Finite Fuzzy Description Logics and Crisp Representations.- Reasoning in Fuzzy OWL 2 with DeLorean.- Dealing with Contradictory Evidence Using Fuzzy Trust in Semantic Web Data.- Storing and Querying Fuzzy Knowledge in the Semantic Web Using FiRE.- Transforming Fuzzy Description Logic ALCFL into Classical Description Logic ALCH.- A Fuzzy Logic-Based Approach to Uncertainty Treatment in the Rule Interchange Format: From Encoding to Extension. PrOntoLearn: Unsupervised Lexico-Semantic Ontology Generation Using Probabilistic Methods.- Semantic Web Search and Inductive Reasoning.- Ontology Enhancement through Inductive Decision Trees.- Assertion Prediction with Ontologies through Evidence Combination.- Representing Uncertain Concepts in
505 0 $aRough Description Logics via Contextual Indiscernibility Relations.- Efficient Trust-Based Approximate SPARQL Querying of the Web of Linked Data -- Probabilistic Ontology and Knowledge Fusion for Procurement Fraud Detection in Brazil --
505 0 $aUnderstanding a Probabilistic Description Logic via Connections to First-Order Logic of Probability.- Pronto: A Practical Probabilistic Description Logic Reasoner.- Instance-Based Non-standard Inferences in EL with Subjective Probabilities.- Finite Fuzzy Description Logics and Crisp Representations.- Reasoning in Fuzzy OWL 2 with DeLorean.- Dealing with Contradictory Evidence Using Fuzzy Trust in Semantic Web Data.- Storing and Querying Fuzzy Knowledge in the Semantic Web Using FiRE.- Transforming Fuzzy Description Logic ALCFL into Classical Description Logic ALCH.- A Fuzzy Logic-Based Approach to Uncertainty Treatment in the Rule Interchange Format: From Encoding to Extension.- PrOntoLearn: Unsupervised Lexico-Semantic Ontology Generation Using Probabilistic Methods.- Semantic Web Search and Inductive Reasoning.- Ontology Enhancement through Inductive Decision Trees.- Assertion Prediction with Ontologies through Evidence Combination.- Representing Uncertain Concepts in
505 0 $aRough Description Logics via Contextual Indiscernibility Relations.- Efficient Trust-Based Approximate SPARQL Querying of the Web of Linked Data.
520 $aThis book contains revised and significantly extended versions of selected papers from three workshops on Uncertainty Reasoning for the Semantic Web (URSW), held at the International Semantic Web Conferences (ISWC) in 2008, 2009, and 2010 or presented at the first international Workshop on Uncertainty in Description Logics (UniDL), held at the Federated Logic Conference (FLoC) in 2010. The 17 papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on probabilistic and Dempster-Shafer models, fuzzy and possibilistic models, inductive reasoning and machine learning, and hybrid approaches.
650 20 $aInformation retrieval.
650 20 $aInformation organization.
650 24 $aArtificial Intelligence (incl. Robotics)
650 10 $aComputer science.
650 0 $aComputer science.
650 0 $aData mining.
650 0 $aInformation storage and retrieval systems.
650 0 $aArtificial intelligence.
650 24 $aData Mining and Knowledge Discovery.
650 24 $aUser Interfaces and Human Computer Interaction.
650 24 $aMathematical Logic and Formal Languages.
650 24 $aProbability and Statistics in Computer Science.
700 1 $aCosta, Paulo C. G.
700 1 $ad’Amato, Claudia.
700 1 $aFanizzi, Nicola.
700 1 $aLaskey, Kathryn B.
700 1 $aLaskey, Kenneth J.
700 1 $aLukasiewicz, Thomas.
700 1 $aNickles, Matthias.
700 1 $aPool, Michael.
776 08 $iPrinted edition:$z9783642359743
830 0 $aLecture notes in computer science ;$v7123.
988 $a20130502
906 $0VEN