Record ID | harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:753920782:2590 |
Source | harvard_bibliographic_metadata |
Download Link | /show-records/harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:753920782:2590?format=raw |
LEADER: 02590cam a2200385 i 4500
001 013691004-1
005 20140131021103.0
008 130205t20132013enka b 001 0 eng
010 $a 2012051079
020 $a9781107034891 (hardback)
020 $a1107034892 (hardback)
035 0 $aocn813938959
040 $aDLC$beng$erda$cDLC$dBTCTA$dOCLCO$dYDXCP$dNUI$dCDX
042 $apcc
050 00 $aQA169$b.G87 2013
082 00 $a512/.55$223
084 $aMAT018000$2bisacsh
100 1 $aGurski, Nick,$d1980-
245 10 $aCoherence in three-dimensional category theory /$cNick Gurski, University of Sheffield.
264 1 $aCambridge :$bCambridge University Press,$c2013, ©2013.
300 $avii, 278 pages :$bill. ;$c24 cm.
336 $atext$2rdacontent
337 $aunmediated$2rdamedia
338 $avolume$2rdacarrier
490 1 $aCambridge tracts in mathematics ;$v201
504 $aIncludes bibliographical references and index.
505 0 $apt.1. Background -- Bicategorical background -- Coherence for bicategories -- Gray-categories --pt.2. Tricategories -- The algebraic definition of tricategory -- Examples -- Free constructions -- Basic structure -- Gray-categories and tricategories -- Coherence via Yoneda -- Coherence via free constructions -- pt.3. Gray monads -- Codescent in Gray-categories -- Codescent as a weighted colimit -- Gray-monads and their algebras -- The reflection of lax algebras into strict algebras -- A general coherence result.
520 $a"Dimension three is an important test-bed for hypotheses in higher category theory and occupies something of a unique position in the categorical landscape. At the heart of matters is the coherence theorem, of which this book provides a definitive treatment, as well as covering related results. Along the way the author treats such material as the Gray tensor product and gives a construction of the fundamental 3-groupoid of a space. The book serves as a comprehensive introduction, covering essential material for any student of coherence and assuming only a basic understanding of higher category theory. It is also a reference point for many key concepts in the field and therefore a vital resource for researchers wishing to apply higher categories or coherence results in fields such as algebraic topology or theoretical computer science"--Provided by publisher.
650 0 $aTricategories.
650 7 $aMATHEMATICS / Logic.$2bisacsh
650 0 $aTriples, Theory of.
830 0 $aCambridge tracts in mathematics ;$v201.
988 $a20130522
049 $aHLSS
906 $0DLC