Record ID | harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:890184567:2529 |
Source | harvard_bibliographic_metadata |
Download Link | /show-records/harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:890184567:2529?format=raw |
LEADER: 02529cam a2200445Ii 4500
001 013795429-8
005 20131008113618.0
008 130809t20132013fr a b 000 0 eng d
016 7 $a016471761$2Uk
020 $a9782856293676 (pbk.)
020 $a2856293670 (pbk.)
035 0 $aocn855333253
040 $aLWU$beng$erda$cLWU$dOCLCO$dCUD$erda$dHDC$dUKMGB$dYDXCP$dIQU$dFDA$dCRU$dCOD$dMUU$dTOZ
041 1 $aeng$beng$bfre
050 4 $aQC174.26.W28$bM45 2013
050 4 $aQA1$b.A82 no.351
100 1 $aMelrose, Richard B.
245 10 $aDiffraction of singularities for the wave equation on manifolds with corners /$cRichard Melrose & András Vasy & Jared Wunsch.
264 1 $aParis :$bSociété mathématique de France,$c2013.
264 4 $c©2013
300 $avi, 135 pages :$billustrations ;$c24 cm.
336 $atext$2rdacontent
337 $aunmediated$2rdamedia
338 $avolume$2rdacarrier
490 1 $aAstérisque,$x0303-1179 ;$v351
546 $aAbstract also in French.
504 $aIncludes bibliographical references (pages [133]-135).
505 0 $aIntroduction -- Geometry: metric and Laplacian -- Bundles and bicharacteristics -- Edge-b calculus -- Differential-pseudodifferential operators -- Coisotropic regularity and non-focusing -- Edge propagation -- Propagation of fiber-global coisotropic regularity -- Geometric theorem.
520 3 $a"We consider the fundamental solution to the wave equation on a manifold with corners of arbitrary codimension. If the initial pole of the solution is appropriately situated, we show that the singularities which are diffracted by the corners (i.e., loosely speaking, are not propagated along limits of transversely reflected rays) are smoother than the main singularities of the solution. More generally, we show that subject to a hypothesis of nonfocusing, diffracted wavefronts of any solution to the wave equation are smoother than the incident singularities. These results extend our previous work on edge manifolds to a situation where the fibers of the boundary fibration, obtained here by blowup of the corner in question, are themselves manifolds with corners."--Page 4 of cover.
650 0 $aWave equation.
650 0 $aManifolds (Mathematics)
650 0 $aSingularities (Mathematics)
700 1 $aVasy, András.
700 1 $aWunsch, Jared.
700 1 $aVasy, András,$eauthor.
700 1 $aWunsch, Jared,$eauthor.
830 0 $aAstérisque ;$v351.$x0303-1179
988 $a20131008
049 $aTOZZ
906 $0OCLC