Record ID | harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:901768986:2201 |
Source | harvard_bibliographic_metadata |
Download Link | /show-records/harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:901768986:2201?format=raw |
LEADER: 02201cam a2200433 i 4500
001 013804109-1
005 20131212153250.0
008 130502s2013 flua b 001 0 eng
010 $a 2013010461
016 7 $a016103277$2Uk
020 $a9781466509764 (hardback : acid-free paper)
020 $a1466509767 (hardback : acid-free paper)
035 $a(PromptCat)99955483691
035 0 $aocn759916476
040 $aDLC$erda$beng$cDLC$dYDX$dBTCTA$dOCLCO$dYDXCP$dOCLCF$dUKMGB$dCDX
042 $apcc
050 00 $aQA269$b.M85 2013
082 00 $a510$223
084 $aMAT000000$aMAT011000$aMAT025000$2bisacsh
100 1 $aMulcahy, Colm Kevin,$d1958-
245 10 $aMathematical card magic :$bfifty-two new effects /$cColm Mulcahy.
264 1 $aBoca Raton :$bCRC Press, Taylor & Francis Group,$c[2013]
300 $axxv, 354 pages :$billustrations ;$c27 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
338 $avolume$bnc$2rdacarrier
500 $a"An A K Peters book."
520 $a"Featuring numerous original creations, this book presents an entertaining look at mathematically based card tricks. The effects in each chapter are rated in four key areas: ease of performance, whether any setup is needed, how much mathematics is involved, and how well it appeals to a general audience. In addition, each chapter highlights the effect with the best use of the mathematical principle involved. Three chapters address the growing field of two-person mathemagic, which uses subtle information theory principles to communicate. The text provides relevant mathematical details, suggestions for potential extensions, and an index of mathematical topics cross-referenced to each chapter."--$cProvided by publisher.
504 $aIncludes bibliographical references and index.
650 0 $aGame theory.
650 0 $aCard tricks.
650 7 $aMATHEMATICS$xGeneral.$2bisacsh
650 7 $aMATHEMATICS$xGame Theory.$2bisacsh
650 7 $aMATHEMATICS$xRecreations & Games.$2bisacsh
650 7 $aCard tricks.$2fast$0(OCoLC)fst00847030
650 7 $aGame theory.$2fast$0(OCoLC)fst00937501
899 $a415_565982
988 $a20131016
906 $0DLC