Record ID | harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:955249659:2787 |
Source | harvard_bibliographic_metadata |
Download Link | /show-records/harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:955249659:2787?format=raw |
LEADER: 02787nam a22004935a 4500
001 013840256-6
005 20131206201624.0
008 121227s2003 xxu| s ||0| 0|eng d
020 $a9781461220664
020 $a9781461220664
020 $a9781461274001
024 7 $a10.1007/978-1-4612-2066-4$2doi
035 $a(Springer)9781461220664
040 $aSpringer
050 4 $aQA564-609
072 7 $aPBMW$2bicssc
072 7 $aMAT012010$2bisacsh
082 04 $a516.35$223
100 1 $aBorovik, Alexandre V.,$eauthor.
245 10 $aCoxeter Matroids /$cby Alexandre V. Borovik, I. M. Gelfand, Neil White.
264 1 $aBoston, MA :$bBirkhäuser Boston,$c2003.
300 $aXXII, 264p. 65 illus.$bonline resource.
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
347 $atext file$bPDF$2rda
490 1 $aProgress in Mathematics ;$v216
505 0 $aIntroduction -- Foreword for the Expert Reader -- Matroids and Flag Matroids -- Matroids and Semimodular Lattices -- Symplectic Matroids -- Lagrangian Matroids -- Reflection Groups and Coxeter Groups -- Coxeter Matroids -- Buildings -- Bibliography -- Index.
520 $aMatroids appear in diverse areas of mathematics, from combinatorics to algebraic topology and geometry. This largely self-contained text provides an intuitive and interdisciplinary treatment of Coxeter matroids, a new and beautiful generalization of matroids which is based on a finite Coxeter group. Key topics and features: * Systematic, clearly written exposition with ample references to current research * Matroids are examined in terms of symmetric and finite reflection groups * Finite reflection groups and Coxeter groups are developed from scratch * The Gelfand-Serganova theorem is presented, allowing for a geometric interpretation of matroids and Coxeter matroids as convex polytopes with certain symmetry properties * Matroid representations in buildings and combinatorial flag varieties are studied in the final chapter * Many exercises throughout * Excellent bibliography and index Accessible to graduate students and research mathematicians alike, "Coxeter Matroids" can be used as an introductory survey, a graduate course text, or a reference volume.
650 20 $aCombinatorial analysis.
650 20 $aAlgebra.
650 20 $aGeometry, Algebraic.
650 10 $aMathematics.
650 0 $aCombinatorial analysis.
650 0 $aMathematics.
650 0 $aAlgebra.
650 0 $aGeometry, algebraic.
650 24 $aMathematics, general.
700 1 $aWhite, Neil,$eauthor.
700 1 $aGelfand, I. M.,$eauthor.
776 08 $iPrinted edition:$z9781461274001
830 0 $aProgress in Mathematics ;$v216.
988 $a20131119
906 $0VEN