Record ID | harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:957208400:2556 |
Source | harvard_bibliographic_metadata |
Download Link | /show-records/harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:957208400:2556?format=raw |
LEADER: 02556nam a22004335a 4500
001 013841310-X
005 20131206202238.0
008 130128s2001 xxu| s ||0| 0|eng d
020 $a9781475734782
020 $a9781475734782
020 $a9781441931443
024 7 $a10.1007/978-1-4757-3478-2$2doi
035 $a(Springer)9781475734782
040 $aSpringer
050 4 $aQA613-613.8
050 4 $aQA613.6-613.66
072 7 $aPBMS$2bicssc
072 7 $aPBPH$2bicssc
072 7 $aMAT038000$2bisacsh
082 04 $a514.34$223
100 1 $aJänich, Klaus,$eauthor.
245 10 $aVector Analysis /$cby Klaus Jänich.
264 1 $aNew York, NY :$bSpringer New York :$bImprint: Springer,$c2001.
300 $aXIV, 283 p.$bonline resource.
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
347 $atext file$bPDF$2rda
490 1 $aUndergraduate Texts in Mathematics,$x0172-6056
505 0 $aDifferentiable manifolds -- Tangent vector space -- Differential forms -- Orientability -- Integration on manifolds -- Open manifolds -- The intuitive meaning of Stokes' theorem -- The hat product and the definition of Cartan's derivative -- Stokes' theorem -- Classical vector analysis -- De Rham cohomology -- Differential forms on Riemannian manifolds -- Calculating in coordinates -- Answers -- References -- Index.
520 $aClassical vector analysis deals with vector fields; the gradient, divergence, and curl operators; line, surface, and volume integrals; and the integral theorems of Gauss, Stokes, and Green. Modern vector analysis distills these into the Cartan calculus and a general form of Stokes' theorem. This essentially modern text carefully develops vector analysis on manifolds and reinterprets it from the classical viewpoint (and with the classical notation) for three-dimensional Euclidean space, then goes on to introduce de Rham cohomology and Hodge theory. The material is accessible to an undergraduate student with calculus, linear algebra, and some topology as prerequisites. The many figures, exercises with detailed hints, and tests with answers make this book particularly suitable for anyone studying the subject independently.
650 24 $aManifolds and Cell Complexes (incl. Diff.Topology)
650 10 $aMathematics.
650 0 $aMathematics.
650 0 $aCell aggregation$xMathematics.
776 08 $iPrinted edition:$z9781441931443
830 0 $aUndergraduate Texts in Mathematics.
988 $a20131119
906 $0VEN