Record ID | harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:958750026:2671 |
Source | harvard_bibliographic_metadata |
Download Link | /show-records/harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:958750026:2671?format=raw |
LEADER: 02671nam a22004695a 4500
001 013841993-0
005 20131206202643.0
008 121227s2004 gw | s ||0| 0|eng d
020 $a9783642187773
020 $a9783642187773
020 $a9783540204060
024 7 $a10.1007/978-3-642-18777-3$2doi
035 $a(Springer)9783642187773
040 $aSpringer
050 4 $aQA71-90
072 7 $aPBKS$2bicssc
072 7 $aMAT006000$2bisacsh
082 04 $a518$223
082 04 $a518$223
100 1 $aKhoromskij, Boris N.,$eauthor.
245 10 $aNumerical Solution of Elliptic Differential Equations by Reduction to the Interface /$cby Boris N. Khoromskij, Gabriel Wittum.
264 1 $aBerlin, Heidelberg :$bSpringer Berlin Heidelberg :$bImprint: Springer,$c2004.
300 $aXI, 293 p.$bonline resource.
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
347 $atext file$bPDF$2rda
490 1 $aLecture Notes in Computational Science and Engineering,$x1439-7358 ;$v36
520 $aThis is the first book that deals systematically with the numerical solution of elliptic partial differential equations by their reduction to the interface via the Schur complement. Inheriting the beneficial features of finite element, boundary element and domain decomposition methods, our approach permits solving iteratively the Schur complement equation with linear-logarithmic cost in the number of the interface degrees of freedom. The book presents the detailed analysis of the efficient data-sparse approximation techniques to the nonlocal Poincaré-Steklov interface operators associated with the Laplace, biharmonic, Stokes and Lamé equations. Another attractive topic are the robust preconditioning methods for elliptic equations with highly jumping, anisotropic coefficients. A special feature of the book is a unified presentation of the traditional iterative substructuring and multilevel methods combined with modern matrix compression techniques applied to the Schur complement on the interface.
650 20 $aDifferential equations, Partial.
650 10 $aMathematics.
650 0 $aMathematics.
650 0 $aDifferential equations, partial.
650 0 $aComputer science$xMathematics.
650 0 $aEngineering mathematics.
650 24 $aComputational Mathematics and Numerical Analysis.
650 24 $aAppl.Mathematics/Computational Methods of Engineering.
700 1 $aWittum, Gabriel,$eauthor.
776 08 $iPrinted edition:$z9783540204060
830 0 $aLecture Notes in Computational Science and Engineering ;$v36.
988 $a20131119
906 $0VEN