Record ID | harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:974752119:2328 |
Source | harvard_bibliographic_metadata |
Download Link | /show-records/harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:974752119:2328?format=raw |
LEADER: 02328nam a22004575a 4500
001 013856705-0
005 20131206204418.0
008 121227s1991 gw | s ||0| 0|eng d
020 $a9783540463962
020 $a9783540463962
020 $a9783540539179
024 7 $a10.1007/BFb0089147$2doi
035 $a(Springer)9783540463962
040 $aSpringer
050 4 $aQA252.3
050 4 $aQA387
072 7 $aPBG$2bicssc
072 7 $aMAT014000$2bisacsh
072 7 $aMAT038000$2bisacsh
082 04 $a512.55$223
082 04 $a512.482$223
100 1 $aBanaszczyk, Wojciech,$eauthor.
245 10 $aAdditive Subgroups of Topological Vector Spaces /$cby Wojciech Banaszczyk.
264 1 $aBerlin, Heidelberg :$bSpringer Berlin Heidelberg,$c1991.
300 $aVII, 182 p.$bonline resource.
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
347 $atext file$bPDF$2rda
490 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1466
520 $aThe Pontryagin-van Kampen duality theorem and the Bochner theorem on positive-definite functions are known to be true for certain abelian topological groups that are not locally compact. The book sets out to present in a systematic way the existing material. It is based on the original notion of a nuclear group, which includes LCA groups and nuclear locally convex spaces together with their additive subgroups, quotient groups and products. For (metrizable, complete) nuclear groups one obtains analogues of the Pontryagin duality theorem, of the Bochner theorem and of the Lévy-Steinitz theorem on rearrangement of series (an answer to an old question of S. Ulam). The book is written in the language of functional analysis. The methods used are taken mainly from geometry of numbers, geometry of Banach spaces and topological algebra. The reader is expected only to know the basics of functional analysis and abstract harmonic analysis.
650 10 $aMathematics.
650 0 $aGlobal analysis (Mathematics)
650 0 $aMathematics.
650 0 $aTopological Groups.
650 24 $aTopological Groups, Lie Groups.
650 24 $aAnalysis.
776 08 $iPrinted edition:$z9783540539179
830 0 $aLecture Notes in Mathematics ;$v1466.
988 $a20131128
906 $0VEN