It looks like you're offline.
Open Library logo
additional options menu

MARC Record from harvard_bibliographic_metadata

Record ID harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:975116139:2889
Source harvard_bibliographic_metadata
Download Link /show-records/harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:975116139:2889?format=raw

LEADER: 02889nam a22004575a 4500
001 013856872-3
005 20131206204526.0
008 121227s1999 gw | s ||0| 0|eng d
020 $a9783540484240
020 $a9783540484240
020 $a9783540663126
024 7 $a10.1007/BFb0092569$2doi
035 $a(Springer)9783540484240
040 $aSpringer
050 4 $aQA564-609
072 7 $aPBMW$2bicssc
072 7 $aMAT012010$2bisacsh
082 04 $a516.35$223
100 1 $aZuo, Kang,$eauthor.
245 10 $aRepresentations of Fundamental Groups of Algebraic Varieties /$cby Kang Zuo.
264 1 $aBerlin, Heidelberg :$bSpringer Berlin Heidelberg,$c1999.
300 $aVIII, 135 pp.$bonline resource.
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
347 $atext file$bPDF$2rda
490 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1708
505 0 $aIntroduction -- Preliminaries -- Review of Algebraic groups over arbitrary fields -- Representations of phi1 and the Moduli space -- p-adic norm on a vector space and Bruhat-Tits buildings -- Harmonic metric on flat vector bundle -- Pluriharmonic map of finite energy -- Pluriharmonic maps of possibly infinite energy but with controlled growth at infinity -- Non-abelian Hodge theory, factorization theorems for non rigid or p-adic unbound representations -- Higgs bundles for archimedean representations and equivariant holomorphic 1-forms for p-adic representations -- Albanese maps and a Lefschetz type theorem for holomorphic 1-forms -- Factorizations for nonrigid representations into almost simple complex algebraic groups -- Factorization for p-adic unbounded representations into almost simple p-adic algebraic groups -- Simpson's construction of families on non rigid representations -- Shavarevich maps for representations of phi1, Kodaira dimension and Chern-hyperbolicity of Shavarevich varieties...
520 $aUsing harmonic maps, non-linear PDE and techniques from algebraic geometry this book enables the reader to study the relation between fundamental groups and algebraic geometry invariants of algebraic varieties. The reader should have a basic knowledge of algebraic geometry and non-linear analysis. This book can form the basis for graduate level seminars in the area of topology of algebraic varieties. It also contains present new techniques for researchers working in this area.
650 20 $aAlgebraic topology.
650 20 $aGeometry, Algebraic.
650 10 $aMathematics.
650 0 $aMathematics.
650 0 $aGeometry, algebraic.
650 0 $aGlobal analysis.
650 0 $aAlgebraic topology.
650 24 $aGlobal Analysis and Analysis on Manifolds.
776 08 $iPrinted edition:$z9783540663126
830 0 $aLecture Notes in Mathematics ;$v1708.
988 $a20131128
906 $0VEN