Record ID | harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:178155550:3008 |
Source | harvard_bibliographic_metadata |
Download Link | /show-records/harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:178155550:3008?format=raw |
LEADER: 03008nam a22005175a 4500
001 014131571-7
005 20140905184846.0
008 140724s2014 gw | s ||0| 0|eng d
020 $a9783319071428
020 $a9783319071428
020 $a9783319071411
024 7 $a10.1007/978-3-319-07142-8$2doi
035 $a(Springer)9783319071428
040 $aSpringer
050 4 $aQA76.76.A65
072 7 $aJ$2bicssc
072 7 $aUB$2bicssc
072 7 $aCOM018000$2bisacsh
072 7 $aSOC000000$2bisacsh
082 04 $a004$223
100 1 $aAhmad, Muhammad Aurangzeb,$eeditor.
245 10 $aPredicting Real World Behaviors from Virtual World Data /$cedited by Muhammad Aurangzeb Ahmad, Cuihua Shen, Jaideep Srivastava, Noshir Contractor.
264 1 $aCham :$bSpringer International Publishing :$bImprint: Springer,$c2014.
300 $aXIV, 118 p. 40 illus., 27 illus. in color.$bonline resource.
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
347 $atext file$bPDF$2rda
490 1 $aSpringer Proceedings in Complexity,$x2213-8684
505 0 $aPreface -- On The Problem of Predicting Real World Characteristics from Virtual Worlds -- The Use of Social Science Methods to Predict Player Characteristics from Avatar Observations -- Analyzing Effects of Public Communication onto Player Behavior in Massively Multiplayer Online Games -- Identifying User Demographic Traits through Virtual-World Language Use -- Predicting MMO Player Gender from In-Game Attributes using Machine Learning Models -- Predicting Links in Human Contact Networks using Online Social Proximity -- Identifying a Typology of Players Based on Longitudinal Game Data.
520 $aThis book addresses prediction, mining and analysis of offline characteristics and behaviors from online data and vice versa. Each chapter will focus on a different aspect of virtual worlds to real world prediction e.g., demographics, personality, location, etc. There is a growing body of literature that focuses on the similarities and differences between how people behave in the offline world vs. how they behave in these virtual environments. Data mining has aided in discovering interesting insights with respect to how people behave in these virtual environments.
650 10 $aComputer science.
650 0 $aComputer science.
650 0 $aSocial sciences$xData processing.
650 0 $aSocial sciences$xMethodology.
650 24 $aComputer Appl. in Social and Behavioral Sciences.
650 24 $aSocio- and Econophysics, Population and Evolutionary Models.
650 24 $aMethodology of the Social Sciences.
650 24 $aMathematics in the Humanities and Social Sciences.
700 1 $aContractor, Noshir,$eeditor.
700 1 $aSrivastava, Jaideep,$eeditor.
700 1 $aShen, Cuihua,$eeditor.
776 08 $iPrinted edition:$z9783319071411
830 0 $aSpringer Proceedings in Complexity.
988 $a20140802
906 $0VEN