It looks like you're offline.
Open Library logo
additional options menu

MARC Record from harvard_bibliographic_metadata

Record ID harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:199887817:2910
Source harvard_bibliographic_metadata
Download Link /show-records/harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:199887817:2910?format=raw

LEADER: 02910cam a2200577 a 4500
001 014147535-8
005 20140825151204.0
008 930930s1993 nyua b 001 0 eng
010 $a 93038411
015 $aGB95-75868
016 7 $a041-20425$2uk
016 7 $ab95-75868$2uk
020 $a0412042517
020 $a9780412042515
035 0 $aocm29183070
040 $aDLC$beng$cDLC$dFPU$dUKM$dBAKER$dNLGGC$dBTCTA$dYDXCP$dZCU$dDEBBG$dBDX$dGBVCP$dOCLCO$dOCLCA$dOCLCF
050 00 $aQA276.8$b.T36 1993
082 00 $a519.5/44$220
084 $a31.73$2bcl
084 $aQH 233$2rvk
084 $aSK 830$2rvk
084 $a*62G07$2msc
084 $a62-01$2msc
084 $a62-02$2msc
084 $a62G05$2msc
084 $a62G10$2msc
100 1 $aTarter, Michael E.
245 10 $aModel-free curve estimation /$cMichael E. Tarter, Michael D. Lock.
260 $aNew York :$bChapman & Hall,$cc1993.
300 $ax, 290 p. :$bill. ;$c23 cm.
490 1 $aMonographs on statistics and applied probability ;$v56
504 $aIncludes bibliographical references (p. 262-276) and indexes.
505 0 $a1. Introduction to curve estimation -- 2. Generalized representation -- 3. Series and kernel-based density estimation -- 4. Optimizing density estimates -- 5. Mixture decomposition applications -- 6. Curve estimation approaches to model and transformation selection -- 7. Threshold parameter and transformation applications -- 8. Applications of likelihood multipliers -- 9. Survival curve and bivariate estimation applications -- 10. Nonparametric curve estimation and inference.
520 $aThis book details Fourier series approach to density estimation and also explores how model-free technology can be expanded to deal with other statistical curves such as survival and regression functions. Beyond these traditional curves, the book describes the implementation of some new curves for exploratory data analysis.
520 8 $aThese include a specialized curve for detecting and analyzing hidden subpopulations in data and a family of curves useful for finding the best transformation and model to use in a statistical analysis. Throughout the emphasis is on the practical aspects of implementing and applying curve-estimation techniques although theoretical matters are addressed when necessary.
650 0 $aEstimation theory.
650 0 $aCurve fitting.
650 7 $aEstimation, théorie de l'.$2ram
650 7 $aCourbes empiriques.$2ram
650 17 $aSchattingstheorie.$2gtt
650 17 $aCurve fitting.$2gtt
650 07 $aKurve.$2swd
650 07 $aSchätztheorie.$2swd
650 7 $aCurve fitting.$2fast
650 7 $aEstimation theory.$2fast
653 0 $aStatistical inference
700 1 $aLock, Michael D.
830 0 $aMonographs on statistics and applied probability (Series) ;$v56.
988 $a20140825
049 $aBOHA
906 $0DLC