Record ID | harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:213510215:2773 |
Source | harvard_bibliographic_metadata |
Download Link | /show-records/harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:213510215:2773?format=raw |
LEADER: 02773nam a22004935a 4500
001 014157690-1
005 20141003190146.0
008 100715s1984 xxu| o ||0| 0|eng d
020 $a9780817647650
020 $a9780817647643 (ebk.)
020 $a9780817647650
020 $a9780817647643
024 7 $a10.1007/978-0-8176-4765-0$2doi
035 $a(Springer)9780817647650
040 $aSpringer
050 4 $aQA612-612.8
072 7 $aMAT038000$2bisacsh
072 7 $aPBPD$2bicssc
082 04 $a514.2$223
100 1 $aBorel, Armand,$eauthor.
245 10 $aIntersection Cohomology /$cby Armand Borel.
264 1 $aBoston, MA :$bBirkhäuser Boston,$c1984.
300 $aX, 234 p.$bonline resource.
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
347 $atext file$bPDF$2rda
490 1 $aProgress in Mathematics ;$v50
505 0 $ato Piecewise Linear Intersection Homology -- From PL to Sheaf Theory (Rock to Bach) -- A Sample Computation of Intersection Homology -- Structures de Pseudovariété sur les Espaces Analytiques Complexes -- Sheaf Theoretic Intersection Cohomology -- Les Foncteurs de la Categorie des Faisceaux Associes a Une Application Continue -- Witt Space Cobordism Theory (after P. Siegel) -- Lefschetz Fixed Point Theorem and Intersection Homology -- Problems and Bibliography on Intersection Homology.
520 $aThis book is a publication in Swiss Seminars, a subseries of Progress in Mathematics. It is an expanded version of the notes from a seminar on intersection cohomology theory, which met at the University of Bern, Switzerland, in the spring of 1983. This volume supplies an introduction to the piecewise linear and sheaf-theoretic versions of that theory as developed by M. Goresky and R. MacPherson in Topology 19 (1980), and in Inventiones Mathematicae 72 (1983). While some familiarity with algebraic topology and sheaf theory is assumed, the notes include a self-contained account of further material on constructibility, derived categories, Verdier duality, biduality, and on stratified spaces, which is used in the second paper but not found in standard texts. "The volume should be useful to someone interested in acquiring some basic knowledge about the field..." —Mathematical Reviews
650 20 $aNumber theory.
650 20 $aK-theory.
650 20 $aAlgebraic topology.
650 20 $aGeometry, Algebraic.
650 10 $aMathematics.
650 0 $aAlgebraic topology.
650 0 $aGeometry, algebraic.
650 0 $aK-theory.
650 0 $aMathematics.
650 0 $aNumber theory.
776 08 $iPrinted edition:$z9780817647643
830 0 $aProgress in Mathematics ;$v50.
988 $a20140910
906 $0VEN