It looks like you're offline.
Open Library logo
additional options menu

MARC Record from harvard_bibliographic_metadata

Record ID harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:215995164:3154
Source harvard_bibliographic_metadata
Download Link /show-records/harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:215995164:3154?format=raw

LEADER: 03154nam a22004215a 4500
001 014158376-2
005 20141003190625.0
008 110222s1998 sz | o ||0| 0|eng d
020 $a9783034800556
020 $a9783034800549 (ebk.)
020 $a9783034800556
020 $a9783034800549
024 7 $a10.1007/978-3-0348-0055-6$2doi
035 $a(Springer)9783034800556
040 $aSpringer
050 4 $aQA319-329.9
072 7 $aMAT037000$2bisacsh
072 7 $aPBKF$2bicssc
082 04 $a515.7$223
100 1 $aBichteler, Klaus,$eauthor.
245 10 $aIntegration - A Functional Approach /$cby Klaus Bichteler.
264 1 $aBasel :$bSpringer Basel,$c1998.
300 $aVIII, 197 p.$bonline resource.
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
347 $atext file$bPDF$2rda
490 1 $aModern Birkhäuser Classics
505 0 $aReview -- Extension of the Integral -- Measurability -- The Classical Banach Spaces -- Operations on Measures -- Answers to Selected Problems.
520 $aThis book covers Lebesgue integration and its generalizations from Daniell's point of view, modified by the use of seminorms. Integrating functions rather than measuring sets is posited as the main purpose of measure theory. From this point of view Lebesgue's integral can be had as a rather straightforward, even simplistic, extension of Riemann's integral; and its aims, definitions, and procedures can be motivated at an elementary level. The notion of measurability, for example, is suggested by Littlewood's observations rather than being conveyed authoritatively through definitions of (sigma)-algebras and good-cut-conditions, the latter of which are hard to justify and thus appear mysterious, even nettlesome, to the beginner. The approach taken provides the additional benefit of cutting the labor in half. The use of seminorms, ubiquitous in modern analysis, speeds things up even further. The book is intended for the reader who has some experience with proofs, a beginning graduate student for example. It might even be useful to the advanced mathematician who is confronted with situations - such as stochastic integration - where the set-measuring approach to integration does not work. ------  Reviews This book provides a complete and rapid introduction to Lebesgue integration and its generalizations from Daniell’s point of view, (…) The development is clear and it contains interesting historical notes and motivations, abundant exercises and many supplements. The connection with the historical development of integration theory is also pointed out. - Zentralblatt MATH The material is well motivated and the writing is pleasantly informal. (…) There are numerous exercises, many destined to be used later in the text, and 15 pages of solutions/hints. - Mathematical Reviews
650 20 $aFunctional analysis.
650 10 $aMathematics.
650 0 $aFunctional analysis.
650 0 $aMathematics.
776 08 $iPrinted edition:$z9783034800549
830 0 $aModern Birkhäuser Classics.
988 $a20140910
906 $0VEN