Record ID | harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:216424162:2861 |
Source | harvard_bibliographic_metadata |
Download Link | /show-records/harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:216424162:2861?format=raw |
LEADER: 02861nam a22005055a 4500
001 014158505-6
005 20141003190714.0
008 100301s2003 gw | o ||0| 0|eng d
020 $a9783540738459
020 $a9783540738442 (ebk.)
020 $a9783540738459
020 $a9783540738442
024 7 $a10.1007/978-3-540-73845-9$2doi
035 $a(Springer)9783540738459
040 $aSpringer
050 4 $aQ334-342
050 4 $aTJ210.2-211.495
072 7 $aCOM004000$2bisacsh
072 7 $aTJFM1$2bicssc
072 7 $aUYQ$2bicssc
082 04 $a006.3$223
100 1 $aSchweitzer, Frank,$eauthor.
245 10 $aBrownian Agents and Active Particles :$bCollective Dynamics in the Natural and Social Sciences /$cby Frank Schweitzer.
264 1 $aBerlin, Heidelberg :$bSpringer Berlin Heidelberg,$c2003.
300 $aXVI, 421 p.$bonline resource.
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
347 $atext file$bPDF$2rda
490 1 $aSpringer Series in Synergetics,$x0172-7389
505 0 $aComplex Systems and Agent Models -- Active Particles -- Aggregation and Physicochemical Structure Formation -- Self-Organization of Networks -- Tracks and Trail Formation in Biological Systems -- Movement and Trail Formation by Pedestrians -- Evolutionary Optimization Using Brownian Searchers -- Analysis and Simulation of Urban Aggregation -- Economic Agglomeration -- Spatial Opinion Structures in Social Systems -- Erratum.
520 $a"This book lays out a vision for a coherent framework for understanding complex systems'' (from the foreword by J. Doyne Farmer). By developing the genuine idea of Brownian agents, the author combines concepts from informatics, such as multiagent systems, with approaches of statistical many-particle physics. This way, an efficient method for computer simulations of complex systems is developed which is also accessible to analytical investigations and quantitative predictions. The book demonstrates that Brownian agent models can be successfully applied in many different contexts, ranging from physicochemical pattern formation, to active motion and swarming in biological systems, to self-assembling of networks, evolutionary optimization, urban growth, economic agglomeration and even social systems.
650 24 $aArtificial Intelligence (incl. Robotics)
650 10 $aPhysics.
650 0 $aArtificial intelligence.
650 0 $aComputer simulation.
650 0 $aEconomics, Mathematical.
650 0 $aPhysics.
650 24 $aGame Theory/Mathematical Methods.
650 24 $aSimulation and Modeling.
650 24 $aStatistical Physics, Dynamical Systems and Complexity.
776 08 $iPrinted edition:$z9783540738442
830 0 $aSpringer Series in Synergetics.
988 $a20140910
906 $0VEN