It looks like you're offline.
Open Library logo
additional options menu

MARC Record from harvard_bibliographic_metadata

Record ID harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:216837389:5049
Source harvard_bibliographic_metadata
Download Link /show-records/harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:216837389:5049?format=raw

LEADER: 05049nam a22004575a 4500
001 014158633-8
005 20141003190803.0
008 121227s1995 gw | o ||0| 0|eng d
020 $a9783642678219
020 $a9783540586609 (ebk.)
020 $a9783642678219
020 $a9783540586609
024 7 $a10.1007/978-3-642-67821-9$2doi
035 $a(Springer)9783642678219
040 $aSpringer
050 4 $aQA612-612.8
072 7 $aMAT038000$2bisacsh
072 7 $aPBPD$2bicssc
082 04 $a514.2$223
100 1 $aDold, A.$q(Albrecht),$d1928-$eauthor.
245 10 $aLectures on Algebraic Topology :$bReprint of the 1972 Edition /$cby Albrecht Dold.
264 1 $aBerlin, Heidelberg :$bSpringer Berlin Heidelberg,$c1995.
300 $aXI, 400p. 10 illus.$bonline resource.
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
347 $atext file$bPDF$2rda
490 1 $aClassics in Mathematics,$x0072-7830 ;$v200
505 0 $aI Preliminaries on Categories, Abelian Groups, and Homotopy -- §1 Categories and Functors -- §2 Abelian Groups (Exactness, Direct Sums, Free Abelian Groups) -- §3 Homotopy -- II Homology of Complexes -- §1 Complexes -- §2 Connecting Homomorphism, Exact Homology Sequence -- §3 Chain-Homotopy -- §4 Free Complexes -- III Singular Homology -- §1 Standard Simplices and Their Linear Maps -- §2 The Singular Complex -- §3 Singular Homology -- §4 Special Cases -- §5 Invariance under Homotopy -- §6 Barycentric Subdivision -- §7 Small Simplices. Excision -- §8 Mayer-Vietoris Sequences -- IV Applications to Euclidean Space -- §1 Standard Maps between Cells and Spheres -- §2 Homology of Cells and Spheres -- §3 Local Homology -- §4 The Degree of a Map -- §5 Local Degrees -- §6 Homology Properties of Neighborhood Retracts in ?n -- §7 Jordan Theorem, Invariance of Domain -- §8 Euclidean Neighborhood Retracts (ENRs) -- V Cellular Decomposition and Cellular Homology --
505 0 $a§1 Cellular Spaces -- §2 CW-Spaces -- §3 Examples -- §4 Homology Properties of CW-Spaces -- §5 The Euler-Poincaré Characteristic -- §6 Description of Cellular Chain Maps and of the Cellular Boundary Homomorphism -- §7 Simplicial Spaces -- §8 Simplicial Homology -- VI Functors of Complexes -- §1 Modules -- §2 Additive Functors -- §3 Derived Functors -- §4 Universal Coefficient Formula -- §5 Tensor and Torsion Products -- §6 Horn and Ext -- §7 Singular Homology and Cohomology with General Coefficient Groups -- §8 Tensorproduct and Bilinearity -- §9 Tensorproduct of Complexes. Künneth Formula -- §10 Horn of Complexes. Homotopy Classification of Chain Maps -- §11 Acyclic Models -- §12 The Eilenberg-Zilber Theorem. Kunneth Formulas for Spaces -- VII Products -- §1 The Scalar Product -- §2 The Exterior Homology Product -- § 3 The Interior Homology Product (Pontijagin Product) -- § 4 Intersection Numbers in ?n -- §5 The Fixed Point Index --
505 0 $a§6 The Lefschetz-Hopf Fixed Point Theorem -- §7 The Exterior Cohomology Product -- § 8 The Interior Cohomology Product (?-Product) -- § 9 ?-Products in Projective Spaces. Hopf Maps and Hopf Invariant -- §10 Hopf Algebras -- §11 The Cohomology Slant Product -- §12 The Cap-Product (?-Product) -- § 13 The Homology Slant Product, and the Pontijagin Slant Product -- VIII Manifolds -- §1 Elementary Properties of Manifolds -- §2 The Orientation Bundle of a Manifold -- §3 Homology of Dimensions ? n in n-Manifolds -- §4 Fundamental Class and Degree -- §5 Limits -- §6 ?ech Cohomology of Locally Compact Subsets of ?n -- §7 Poincaré-Lefschetz Duality -- §8 Examples, Applications -- §9 Duality in ?-Manifolds -- §10 Transfer -- §11 Thom Class, Thom Isomorphism -- §12 The Gysin Sequence. Examples -- §13 Intersection of Homology Classes -- Appendix: Kan- and ?ech-Extensions of Functors -- §1 Limits of Functors -- §2 Polyhedrons under a Space, and Partitions of Unity --
505 0 $a§3 Extending Functors from Polyhedrons to More General Spaces.
520 $aSpringer-Verlag began publishing books in higher mathematics in 1920, when the series Grundlehren der mathematischen Wissenschaften, initially conceived as a series of advanced textbooks, was founded by Richard Courant. A few years later, a new series Ergebnisse der Mathematik und Ihrer Grenzgebiete, survey reports of recent mathematical research, was added. Of over 400 books published in these series, many have become recognized classics and remain standard references for their subject. Springer is reissueing a selected few of these highly successful books in a new, inexpensive softcover edition to make them easily accessible to younger generations of students and researchers.
650 20 $aAlgebraic topology.
650 10 $aMathematics.
650 0 $aAlgebraic topology.
650 0 $aMathematics.
776 08 $iPrinted edition:$z9783540586609
830 0 $aClassics in Mathematics ;$v200.
988 $a20140910
906 $0VEN