It looks like you're offline.
Open Library logo
additional options menu

MARC Record from harvard_bibliographic_metadata

Record ID harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:223147802:2995
Source harvard_bibliographic_metadata
Download Link /show-records/harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:223147802:2995?format=raw

LEADER: 02995nam a22005055a 4500
001 014162731-X
005 20141003191226.0
008 140829s2014 gw | s ||0| 0|eng d
020 $a9783319078212
020 $a9783319078212
020 $a9783319078205
024 7 $a10.1007/978-3-319-07821-2$2doi
035 $a(Springer)9783319078212
040 $aSpringer
050 4 $aQA76.9.D343
072 7 $aUNF$2bicssc
072 7 $aUYQE$2bicssc
072 7 $aCOM021030$2bisacsh
082 04 $a006.312$223
100 1 $aAggarwal, Charu C.,$eeditor.
245 10 $aFrequent Pattern Mining /$cedited by Charu C. Aggarwal, Jiawei Han.
264 1 $aCham :$bSpringer International Publishing :$bImprint: Springer,$c2014.
300 $aXIX, 471 p. 83 illus., 19 illus. in color.$bonline resource.
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
347 $atext file$bPDF$2rda
505 0 $aAn Introduction to Frequent Pattern Mining -- Frequent Pattern Mining Algorithms: A Survey -- Pattern-growth Methods -- Mining Long Patterns -- Interesting Patterns -- Negative Association Rules -- Constraint-based Pattern Mining -- Mining and Using Sets of Patterns through Compression -- Frequent Pattern Mining in Data Streams -- Big Data Frequent Pattern Mining -- Sequential Pattern Mining -- Spatiotemporal Pattern Mining: Algorithms and Applications -- Mining Graph Patterns -- Uncertain Frequent Pattern Mining -- Privacy in Association Rule Mining -- Frequent Pattern Mining Algorithms for Data Clustering -- Supervised Pattern Mining and Applications to Classification -- Applications of Frequent Pattern Mining.
520 $aThis comprehensive reference consists of 18 chapters from prominent researchers in the field. Each chapter is self-contained, and synthesizes one aspect of frequent pattern mining. An emphasis is placed on simplifying the content, so that students and practitioners can benefit from the book. Each chapter contains a survey describing key research on the topic, a case study and future directions. Key topics include: Pattern Growth Methods, Frequent Pattern Mining in Data Streams, Mining Graph Patterns, Big Data Frequent Pattern Mining, Algorithms for Data Clustering and more. Advanced-level students in computer science, researchers and practitioners from industry will find this book an invaluable reference.
650 20 $aPattern perception.
650 24 $aArtificial Intelligence (incl. Robotics)
650 20 $aDatabase management.
650 10 $aComputer science.
650 0 $aComputer science.
650 0 $aDatabase management.
650 0 $aData mining.
650 0 $aArtificial intelligence.
650 0 $aOptical pattern recognition.
650 0 $aBiometrics.
650 24 $aData Mining and Knowledge Discovery.
650 24 $aBiometrics.
700 1 $aHan, Jiawei,$eeditor.
776 08 $iPrinted edition:$z9783319078205
988 $a20140917
906 $0VEN