It looks like you're offline.
Open Library logo
additional options menu

MARC Record from harvard_bibliographic_metadata

Record ID harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:296080067:2615
Source harvard_bibliographic_metadata
Download Link /show-records/harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:296080067:2615?format=raw

LEADER: 02615nam a22004575a 4500
001 014221747-6
005 20141212185214.0
008 141009s2014 gw | s ||0| 0|eng d
020 $a9783319100944
020 $a9783319100944
020 $a9783319100937
024 7 $a10.1007/978-3-319-10094-4$2doi
035 $a(Springer)9783319100944
040 $aSpringer
050 4 $aQA241-247.5
072 7 $aPBH$2bicssc
072 7 $aMAT022000$2bisacsh
082 04 $a512.7$223
100 1 $aBilu, Yuri F.,$eauthor.
245 14 $aThe Problem of Catalan /$cby Yuri F. Bilu, Yann Bugeaud, Maurice Mignotte.
264 1 $aCham :$bSpringer International Publishing :$bImprint: Springer,$c2014.
300 $aXIV, 245 p. 3 illus.$bonline resource.
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
347 $atext file$bPDF$2rda
505 0 $aAn Historical Account -- Even Exponents -- Cassels' Relations -- Cyclotomic Fields -- Dirichlet L-Series and Class Number Formulas -- Higher Divisibility Theorems -- Gauss Sums and Stickelberger's Theorem -- Mihăilescu’s Ideal -- The Real Part of Mihăilescu’s Ideal -- Cyclotomic units -- Selmer Group and Proof of Catalan's Conjecture -- The Theorem of Thaine -- Baker's Method and Tijdeman's Argument -- Appendix A: Number Fields -- Appendix B: Heights -- Appendix C: Commutative Rings, Modules, Semi-Simplicity -- Appendix D: Group Rings and Characters -- Appendix E: Reduction and Torsion of Finite G-Modules -- Appendix F: Radical Extensions.
520 $aIn 1842 the Belgian mathematician Eugène Charles Catalan asked whether 8 and 9 are the only consecutive pure powers of non-zero integers. 160 years after, the question was answered affirmatively by the Swiss mathematician of Romanian origin Preda Mihăilescu. In this book we give a complete and (almost) self-contained exposition of Mihăilescu’s work, which must be understandable by a curious university student, not necessarily specializing in Number Theory. We assume very modest background: a standard university course of algebra, including basic Galois theory, and working knowledge of basic algebraic number theory.
650 20 $aAlgebra.
650 20 $aNumber theory.
650 10 $aMathematics.
650 0 $aMathematics.
650 0 $aAlgebra.
650 0 $aNumber theory.
650 24 $aGeneral Algebraic Systems.
700 1 $aMignotte, Maurice,$eauthor.
700 1 $aBugeaud, Yann,$eauthor.
776 08 $iPrinted edition:$z9783319100937
899 $a415_565982
988 $a20141104
906 $0VEN