It looks like you're offline.
Open Library logo
additional options menu

MARC Record from harvard_bibliographic_metadata

Record ID harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:318131691:1470
Source harvard_bibliographic_metadata
Download Link /show-records/harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:318131691:1470?format=raw

LEADER: 01470cam a22003015a 4500
001 014240175-7
005 20150116184801.0
006 m|||||o||d||||||||
008 140928s1989 riua ob 000 0 eng
020 $a9781470408220 (online)
040 $aDLC$cDLC$dDLC$dRPAM
050 00 $aQA3$b.A57 no. 402$aQA374
082 00 $a510 s$a515/.35$220
100 1 $aWalther, Hans-Otto.
245 10 $aHyberbolic [sic] periodic solutions, heteroclinic connections, and transversal homoclinic points in autonomous differential delay equations /$h[electronic resource]$cHans-Otto Walther.
260 $aProvidence, R.I., USA :$bAmerican Mathematical Society,$cc1989.
300 $a1 online resource (iv, 104 p. : ill.)
490 1 $aMemoirs of the American Mathematical Society,$x0065-9266 (print),$x1947-6221 (online);$vv. 402
504 $aBibliography: p. 103-104.
588 $aDescription based on print version record.
538 $aMode of access: World Wide Web.
650 0 $aChaotic behavior in systems.
650 0 $aDelay differential equations.
740 0 $aHyperbolic periodic solutions, heteroclinic connections ...
776 0 $iPrint version:$aWalther, Hans-Otto.$tHyberbolic [sic] periodic solutions, heteroclinic connections, and transversal homoclinic points in autonomous differential delay equations /$w(DLC) 89006592$x0065-9266$z9780821824672
830 0 $aMemoirs of the American Mathematical Society ;$vno. 402.
988 $a20141202
906 $0DLC