Record ID | harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:43385484:2706 |
Source | harvard_bibliographic_metadata |
Download Link | /show-records/harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:43385484:2706?format=raw |
LEADER: 02706cam a2200325Ia 4500
001 014028555-5
005 20140804160157.0
008 140423s2014 maua b 001 0 eng d
020 $a1571462880
020 $a9781571462886
035 0 $aocn878024329
040 $aYDXCP$beng$cYDXCP$dBTCTA$dOCLCQ$dOCLCO$dIXA
050 4 $aQA601$b.L529 2014
082 04 $a515.723$223
100 1 $aLi, Charles,$d1965-
245 10 $aLie-bäcklund-darboux transformations /$cY. chales Li, Artyom Yurov.
260 $a[Somerville, MA] :$bInternational Press,$c2014.
300 $aix, 160 p. :$bill. ;$c26 cm.
490 1 $aSurveys of modern mathematics ;$vv. 8
504 $aIncludes bibliographical references (p. [155]-160) and index.
505 0 $a1. Introduction -- 2. A brief account on Bäcklund transformations -- 3. Nonlinear Schrödinger equation -- 4. Sine-Gordon equation -- 5. Heisenberg ferromagnet equation -- 6. Vector nonlinear Schrödinger equations -- 7. Derivative nonlinear Schrödinger equations -- 8. Discrete nonlinear Schrödinger equation -- 9. Davey-Stewartson II equation -- 10. Acoustic spectral problem -- 11. SUSY and spectrum reconstructions -- 12. Darboux transformations for Dirac equation -- 13. Moutard transformations for the 2D and 3D Schrödinger equations --14. BLP equation -- 15. Goursat equation -- 16. Links among integrable systems.
520 3 $aThis is an interdisciplinary monograph at the cutting edges of infinite dimensional dynamical systems, partial differential equations, and mathematical physics. It discusses Y. Charles Li's work of connecting Darboux transformations to homoclinic orbits and Melnikov integrals for integrable partial differential equations; and Artyom Yurov's work in applying Darboux transformations to numerous areas of physics. Of particular interest to the reader might be the brand-new methods, developed by Li in collaboration with others, of using Darboux transformations to construct homoclinic orbits, Melnikov integrals, and Melnikov vectors for integrable systems. It should be noted that integrable systems (also named soliton equations) are the infinite dimensional counterparts of finite dimensional integrable Hamiltonian systems. What the new methods reveal are the infinite dimensional phase space structures. This work is intended for advanced undergraduates, graduate and postdoctoral students, and senior researchers in mathematics, physics, and other relevant scientific areas.
650 0 $aBäcklund transformations.
650 0 $aDarboux transformations.
700 1 $aYurov, Artyom.
830 0 $aSurveys of modern mathematics ;$vv. 8.
899 $a415_565004
988 $a20140506
049 $aHLSS
906 $0OCLC