Record ID | ia:cohomologyofdrin0000laum |
Source | Internet Archive |
Download MARC XML | https://archive.org/download/cohomologyofdrin0000laum/cohomologyofdrin0000laum_marc.xml |
Download MARC binary | https://www.archive.org/download/cohomologyofdrin0000laum/cohomologyofdrin0000laum_meta.mrc |
LEADER: 04813cam 2200709 a 4500
001 ocm30733642
003 OCoLC
005 20200627074308.0
008 940615m19961997enk b 001 0 eng
010 $a 94027643
040 $aDLC$beng$cDLC$dFPU$dUKM$dBAKER$dNLGGC$dBTCTA$dYDXCP$dOCLCQ$dBDX$dIG#$dOCLCF$dOCLCQ$dONB$dL2U
015 $aGB9597172$2bnb
019 $a33969080$a800027674$a816300061$a818732996$a819507565$a828895311$a862040613$a864281494$a866922445$a866993363$a875851684$a885019040$a885142521$a885970120$a894131521$a894133828$a895247118$a897022795$a903345570$a1097812290
020 $a0521470609$q(pt. 1 ;$qhardback)
020 $a9780521470605$q(pt. 1 ;$qhardback)
020 $a0521470617$q(pt. 2 ;$qhardback)
020 $a9780521470612$q(pt. 2 ;$qhardback)
035 $a(OCoLC)30733642$z(OCoLC)33969080$z(OCoLC)800027674$z(OCoLC)816300061$z(OCoLC)818732996$z(OCoLC)819507565$z(OCoLC)828895311$z(OCoLC)862040613$z(OCoLC)864281494$z(OCoLC)866922445$z(OCoLC)866993363$z(OCoLC)875851684$z(OCoLC)885019040$z(OCoLC)885142521$z(OCoLC)885970120$z(OCoLC)894131521$z(OCoLC)894133828$z(OCoLC)895247118$z(OCoLC)897022795$z(OCoLC)903345570$z(OCoLC)1097812290
050 00 $aQA251$b.L287 1996
082 00 $a512/.24$220
084 $a31.65$2bcl
100 1 $aLaumon, Gérard.
245 10 $aCohomology of Drinfeld modular varieties /$cGérard Laumon.
260 $aCambridge, U.K. ;$aNew York :$bCambridge University Press,$c1996-1997.
300 $a2 volumes ;$c24 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
338 $avolume$bnc$2rdacarrier
490 1 $aCambridge studies in advanced mathematics ;$v41, 56
500 $a"With an appendix by Jean-Loup Waldspurger"--Pt. 2, title page.
504 $aIncludes bibliographical references and indexes.
505 0 $apt. 1. Geometry, counting of points, and local harmonic analysis -- pt. 2. Automorphic forms, trace formulas, and Langlands correspondence.
520 $aCohomology of Drinfeld Modular Varieties aims to provide an introduction, in two volumes, both to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By analogy with the number-theoretic case, one expects to establish the conjecture for function fields by studying the cohomology of Drinfeld modular varieties, which has been done by Drinfeld himself for the rank two case. The present volume is devoted to the geometry of these varieties, and to the local harmonic analysis needed to compute their cohomology. It is based on graduate courses taught by the author, who uses techniques which are extensions of those used to study Shimura varieties. Though the author considers only the simpler case of function rather than number fields, many important features of the number field case can be illustrated. Several appendices on background material keep the work reasonably self-contained. It is the first book on this subject and will be of much interest to all researchers in algebraic number theory and representation theory.
650 0 $aDrinfeld modular varieties.
650 0 $aHomology theory.
650 7 $a31.65 varieties, cell complexes.$0(NL-LeOCL)08044864X$2bcl
650 7 $aDrinfeld modular varieties.$2fast$0(OCoLC)fst00898159
650 7 $aHomology theory.$2fast$0(OCoLC)fst00959720
650 17 $aAlgebraïsche groepen.$2gtt
650 17 $aCohomologie.$2gtt
650 17 $aVariëteiten (wiskunde)$2gtt
650 7 $aDrinfeld, modules de.$2ram
650 7 $aHomologie.$2ram
653 0 $aAlgebra
776 08 $iOnline version:$aLaumon, Gérard.$tCohomology of Drinfeld modular varieties.$dCambridge, U.K. ; New York : Cambridge University Press, 1996-1997$w(OCoLC)1035156642
830 0 $aCambridge studies in advanced mathematics ;$v41, 56.
856 41 $3Table of contents$uhttp://catdir.loc.gov/catdir/toc/cam027/94027643.html
856 42 $3Publisher description$uhttp://catdir.loc.gov/catdir/description/cam026/94027643.html
938 $aBaker & Taylor$bBKTY$c130.00$d130.00$i0521470609$n0002526862$sactive
938 $aBaker & Taylor$bBKTY$c140.00$d140.00$i0521470617$n0002844445$sactive
938 $aBrodart$bBROD$n47730595$c$158.00
938 $aBaker and Taylor$bBTCP$nBK0008172302
938 $aIngram$bINGR$n9780521470605
938 $aYBP Library Services$bYANK$n466717
029 1 $aAU@$b000011040818
029 1 $aAU@$b000021788081
029 1 $aHEBIS$b103363939
029 1 $aNLGGC$b157552535
029 1 $aNZ1$b4835623
029 1 $aYDXCP$b466717
994 $aZ0$bP4A
948 $hHELD BY P4A - 208 OTHER HOLDINGS