Record ID | ia:concordancehomot0000anto |
Source | Internet Archive |
Download MARC XML | https://archive.org/download/concordancehomot0000anto/concordancehomot0000anto_marc.xml |
Download MARC binary | https://www.archive.org/download/concordancehomot0000anto/concordancehomot0000anto_meta.mrc |
LEADER: 03168cam 2200757 4500
001 ocm00201946
003 OCoLC
005 20201007233721.0
008 711028s1971 gw b 000 0 eng
010 $a 73171479
040 $aDLC$beng$cDLC$dMUQ$dNLGGC$dSTF$dAU@$dGBVCP$dDEBBG$dYDXCP$dDEBSZ$dOCLCO$dOCLCF$dOCLCQ$dQE2$dOCLCQ$dOCLCO$dDHA$dOCLCQ$dUAB$dAAA$dCPO$dOCLCO$dOCLCQ$dUKMGB$dDCHUA$dOCLCQ
066 $c(S
016 7 $a454587813$2DE-101
016 7 $a012133643$2Uk
020 $a0387055606$q(Springer-Verlag New York)
020 $a9780387055602$q(Springer-Verlag New York)
020 $a3540055606
020 $a9783540055600
035 $a(OCoLC)201946
050 00 $aQA3$b.L28 no. 215$aQA387
082 00 $a512/.2
084 $a31.27$2bcl
084 $a31.65$2bcl
084 $aSI 850$2rvk
084 $a19a$2sdnb
100 1 $aAntonelli, Peter L.
245 14 $aThe concordance-homotopy groups of geometric automorphism groups$c[by] Peter L. Antonelli, Dan Burghelea [and] Peter J. Kahn.
260 $aBerlin,$aNew York,$bSpringer-Verlag,$c1971.
300 $ax, 140 pages$c26 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
338 $avolume$bnc$2rdacarrier
490 1 $aLecture notes in mathematics (Berlin),$v215
504 $aIncludes bibliographical references (pages 137-140).
650 0 $aTopological groups.
650 0 $aHomotopy theory.
650 6 $aGroupes topologiques.
650 6 $aDéformations continues (Mathématiques)
650 7 $aHomotopy theory.$2fast$0(OCoLC)fst00959852
650 7 $aTopological groups.$2fast$0(OCoLC)fst01152684
650 7 $aAutomorphismengruppe$2gnd
650 7 $aHomotopiegruppe$2gnd
650 4 $aDéformations continues (Mathématiques)
650 4 $aGroupes topologiques.
650 07 $aAutomorphismengruppe.$2swd
650 07 $aHomotopiegruppe.$2swd
700 1 $aBurghelea, Dan,$eauthor.
700 1 $aKahn, Peter J.,$eauthor.
830 0 $aLecture notes in mathematics (Springer-Verlag) ;$v215.
856 41 $3Table of contents$uhttp://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=2012016&custom_att_2=simple_viewer
856 41 $3Table of contents$uhttp://www.gbv.de/dms/hbz/toc/ht001066601.pdf
856 41 $uhttp://www.springerlink.com/openurl.asp?genre=issue&issn=0075-8434&volume=215
856 4 $3Cover$qapplication/pdf$uhttp://swbplus.bsz-bw.de/bsz011204729cov.htm$v20110329093920
880 0 $6505-00/(S$aPreliminary definitions and lemmas -- The groups πi(a; M rel X) and πi+1(B, a; M rel X) -- Exactness and naturality -- Special computations of πi(a; M rel X) -- A classification theorem for πi(B, a; M rel X) -- Proof of the classification theorem.
938 $aYBP Library Services$bYANK$n3659171
029 1 $aAU@$b000000397861
029 1 $aAU@$b000012424644
029 1 $aDEBBG$bBV002965392
029 1 $aDEBBG$bBV022123306
029 1 $aDEBSZ$b011204729
029 1 $aGBVCP$b020533330
029 1 $aHEBIS$b090557255
029 1 $aNZ1$b2941522
029 1 $aUKMGB$b012133643
994 $aZ0$bP4A
948 $hNO HOLDINGS IN P4A - 340 OTHER HOLDINGS