Record ID | ia:informationtheor0000unse_g5j9 |
Source | Internet Archive |
Download MARC XML | https://archive.org/download/informationtheor0000unse_g5j9/informationtheor0000unse_g5j9_marc.xml |
Download MARC binary | https://www.archive.org/download/informationtheor0000unse_g5j9/informationtheor0000unse_g5j9_meta.mrc |
LEADER: 16147cam 2200409 i 4500
001 9925305480001661
005 20171111043846.8
007 ta
008 170206t20172017enka b 001 0 eng
010 $a 2017004136
020 $a9781107132269$q(hardback)
020 $a1107132266$q(hardback)
035 $a99975645735
035 $a(OCoLC)966945943
035 $a(OCoLC)ocn966945943
040 $aDLC$beng$erda$cDLC$dYDX$dBTCTA$dOCLCO$dOCLCF$dNDD$dIUL$dTFW$dIPL$dOCLCQ$dCHVBK$dOCLCO$dU3G
042 $apcc
050 00 $aTK5102.85$b.I534 2017
082 00 $a621.384$223
245 00 $aInformation theoretic security and privacy of information systems /$c[edited by] Rafael F. Schaefer, Technische Universita<U+00cc>℗t Berlin, Holger Boche, Technische Universita<U+00cc>℗t Mu<U+00cc>℗nchen, Ashish Khisti, University of Toronto, H. Vincent Poor, Princeton University.
264 1 $aCambridge, United Kingdom ;$aNew York, NY, USA :$bCambridge University Press,$c[2017]
264 4 $cỨ́2017
300 $axxi, 558 pages :$billustrations ;$c26 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
338 $avolume$bnc$2rdacarrier
504 $aIncludes bibliographical references and index.
505 00 $aNote continued:$g15.8.1.$tAchievability Part for Theorem 15.5 /$rF.M.J. Willems /$rT. Ignatenko --$g15.8.2.$tConverse for Theorem 15.5 /$rF.M.J. Willems /$rT. Ignatenko --$g15.9.$tConclusions and Final Remarks /$rF.M.J. Willems /$rT. Ignatenko --$tReferences /$rF.M.J. Willems /$rT. Ignatenko --$g16.$tJoint Privacy and Security of Multiple Biometric Systems /$rF.M.J. Willems /$rT. Ignatenko --$g16.1.$tIntroduction /$rS.C. Draper /$rA. Goldberg --$g16.1.1.$tBiometric System Design Requirements /$rS.C. Draper /$rA. Goldberg --$g16.1.2.$tSecurity and Privacy Leakage /$rS.C. Draper /$rA. Goldberg --$g16.1.3.$tRelated Work /$rS.C. Draper /$rA. Goldberg --$g16.2.$tProblem Formulation /$rS.C. Draper /$rA. Goldberg --$g16.3.$tDesign Space /$rS.C. Draper /$rA. Goldberg --$g16.3.1.$tGeometric Intuition /$rS.C. Draper /$rA. Goldberg --$g16.3.2.$tScaling Complexity /$rS.C. Draper /$rA. Goldberg --$g16.3.3.$tEquivalent Designs /$rS.C. Draper /$rA. Goldberg --$g16.4.$tThe Fixed-Basis Case /$rS.C. Draper /$rA. Goldberg --$g16.4.1.$tImpact of the Restriction /$rS.C. Draper /$rA. Goldberg --$g16.4.2.$tOptimization of Fixed-Basis Designs /$rS.C. Draper /$rA. Goldberg --$g16.4.3.$tResulting Privacy/Security Tradeoff /$rS.C. Draper /$rA. Goldberg --$g16.4.4.$tObserved Form of Optimal Solutions /$rS.C. Draper /$rA. Goldberg --$g16.5.$tConclusions /$rS.C. Draper /$rA. Goldberg --$tReferences /$rS.C. Draper /$rA. Goldberg --$g17.$tInformation Theoretic Approaches to Privacy-Preserving Information Access and Dissemination /$rS.C. Draper /$rA. Goldberg --$g17.1.$tIntroduction /$rK. Ramchandran /$rG. Fanti --$g17.2.$tInformation Dissemination /$rK. Ramchandran /$rG. Fanti --$g17.2.1.$tAnonymous Broadcast Messaging /$rK. Ramchandran /$rG. Fanti --$g17.2.2.$tAnonymous Point-to-Point Messaging /$rG. Fanti /$rK. Ramchandran --$g17.3.$tInformation Access /$rK. Ramchandran /$rG. Fanti --$g17.3.1.$tAdversarial Models /$rK. Ramchandran /$rG. Fanti --$g17.3.2.$tPrivate Information Retrieval /$rK. Ramchandran /$rG. Fanti --$g17.3.3.$tPrivate Streaming Search /$rK. Ramchandran /$rG. Fanti --$g17.3.4.$tEncrypted Databases /$rK. Ramchandran /$rG. Fanti --$g17.4.$tConclusions /$rK. Ramchandran /$rG. Fanti --$tReferences /$rK. Ramchandran /$rG. Fanti --$g18.$tPrivacy in the Smart Grid: Information, Control, and Games /$rG. Fanti /$rK. Ramchandran --$g18.1.$tIntroduction /$rH.V. Poor --$g18.2.$tInformation: A General Formalism /$rH.V. Poor --$g18.3.$tControl: Smart Meter Privacy /$rH.V. Poor --$g18.4.$tGames: Competitive Privacy /$rH.V. Poor --$g18.5.$tConclusion /$rH.V. Poor --$tReferences /$rH.V. Poor --$g19.$tSecurity in Distributed Storage Systems /$rH.V. Poor --$g19.1.$tIntroduction /$rS. El Rouayheb /$rS. Goparaju /$rK. Ramchandran --$g19.1.1.$tRelated Literature /$rS. Goparaju /$rS. El Rouayheb /$rK. Ramchandran --$g19.1.2.$tOrganization /$rS. Goparaju /$rS. El Rouayheb /$rK. Ramchandran --$g19.2.$tModel and Notation /$rS. Goparaju /$rS. El Rouayheb /$rK. Ramchandran --$g19.2.1.$tSystem Model /$rS. El Rouayheb /$rS. Goparaju /$rK. Ramchandran --$g19.2.2.$tSecurity and Adversary Model /$rS. El Rouayheb /$rS. Goparaju /$rK. Ramchandran --$g19.2.3.$tSecrecy Capacity and Notation /$rS. Goparaju /$rS. El Rouayheb /$rK. Ramchandran --$g19.2.4.$tFlow Graph Representation /$rS. Goparaju /$rS. El Rouayheb /$rK. Ramchandran --$g19.3.$tSecrecy against Passive Eavesdropping /$rS. Goparaju /$rS. El Rouayheb /$rK. Ramchandran --$g19.3.1.$tUpper Bound on the Secrecy Capacity /$rS. El Rouayheb /$rS. Goparaju /$rK. Ramchandran --$g19.3.2.$tAchievability of the Secrecy Capacity /$rS. El Rouayheb /$rS. Goparaju /$rK. Ramchandran --$g19.3.3.$tSecrecy via Separation Schemes /$rS. El Rouayheb /$rS. Goparaju /$rK. Ramchandran --$g19.3.4.$tSeparation Secrecy Capacity of Linear Optimal Repair MDS Codes /$rS. Goparaju /$rS. El Rouayheb /$rK. Ramchandran --$g19.3.5.$tUniversally Secure Optimal Repair MDS Codes /$rS. Goparaju /$rS. El Rouayheb /$rK. Ramchandran --$g19.4.$tSecurity against an Omniscient Adversary /$rS. El Rouayheb /$rS. Goparaju /$rK. Ramchandran --$g19.4.1.$tUpper Bound on the Resiliency Capacity /$rS. El Rouayheb /$rS. Goparaju /$rK. Ramchandran --$g19.4.2.$tAchievability of the Resiliency Capacity Upper Bound /$rS. El Rouayheb /$rS. Goparaju /$rK. Ramchandran --$g19.5.$tSecurity against a Limited-Knowledge Adversary /$rS. El Rouayheb /$rS. Goparaju /$rK. Ramchandran --$g19.5.1.$tResiliency Capacity /$rS. El Rouayheb /$rS. Goparaju /$rK. Ramchandran --$g19.5.2.$tSecure Scheme Example /$rS. El Rouayheb /$rS. Goparaju /$rK. Ramchandran --$g19.5.3.$tProof of Theorem 19.9 /$rS. El Rouayheb /$rS. Goparaju /$rK. Ramchandran --$g19.6.$tConclusion and Open Problems /$rK. Ramchandran /$rS. El Rouayheb /$rS. Goparaju.
505 00 $aNote continued:$g8.4.2.$tConverse Tools /$rP. Mukherjee /$rR. Tandon /$rS. Ulukus --$g8.5.$tThe MISO BCCM in Alternating CSIT States /$rP. Mukherjee /$rR. Tandon /$rS. Ulukus --$g8.5.1.$tAchievability /$rP. Mukherjee /$rR. Tandon /$rS. Ulukus --$g8.6.$tConclusions and Open Problems /$rP. Mukherjee /$rR. Tandon /$rS. Ulukus --$tReferences /$rR. Tandon /$rS. Ulukus /$rP. Mukherjee --$g9.$tStochastic Orders, Alignments, and Ergodic Secrecy Capacity /$rP. Mukherjee /$rS. Ulukus /$rR. Tandon --$g9.1.$tIntroduction /$rE.A. Jorswieck /$rP.H. Lin --$g9.2.$tPreliminaries /$rP.H. Lin /$rE.A. Jorswieck --$g9.2.1.$tProperties of Wiretap Channels /$rE.A. Jorswieck /$rP.H. Lin --$g9.2.2.$tProperties of Stochastic Orders /$rE.A. Jorswieck /$rP.H. Lin --$g9.3.$tSystem Model /$rE.A. Jorswieck /$rP.H. Lin --$g9.4.$tThe Relation between Degradedness and Stochastic Orders /$rP.H. Lin /$rE.A. Jorswieck --$g9.5.$tThe Fast Fading Wiretap Channel with Statistical CSIT /$rE.A. Jorswieck /$rP.H. Lin --$g9.5.1.$tThe Layered Erasure Wiretap Channel /$rP.H. Lin /$rE.A. Jorswieck --$g9.5.2.$tThe Fast Fading Gaussian Wiretap Channel with Statistical CSIT /$rE.A. Jorswieck /$rP.H. Lin --$g9.6.$tNumerical Results /$rP.H. Lin /$rE.A. Jorswieck --$g9.7.$tMultiple-Antenna Fading Wiretap Channel with Statistical CSIT /$rE.A. Jorswieck /$rP.H. Lin --$g9.7.1.$tMultiple Antennas without Channel Enhancement /$rP.H. Lin /$rE.A. Jorswieck --$g9.7.2.$tMultiple Antennas with Channel Enhancement /$rE.A. Jorswieck /$rP.H. Lin --$g9.8.$tConclusion /$rE.A. Jorswieck /$rP.H. Lin --$tReferences /$rE.A. Jorswieck /$rP.H. Lin --$g10.$tThe Discrete Memoryless Arbitrarily Varying Wiretap Channel /$rP.H. Lin /$rE.A. Jorswieck --$g10.1.$tIntroduction /$rJ. Notzel /$rM. Wiese /$rH. Boche --$g10.1.1.$tSystem Model /$rJ. Notzel /$rH. Boche /$rM. Wiese --$g10.1.2.$tHistorical Background /$rJ. Notzel /$rH. Boche /$rM. Wiese --$g10.1.3.$tNew Approaches and New Results /$rJ. Notzel /$rH. Boche /$rM. Wiese --$g10.2.$tNotation and Definitions /$rJ. Notzel /$rH. Boche /$rM. Wiese --$g10.2.1.$tBasic Notation /$rJ. Notzel /$rH. Boche /$rM. Wiese --$g10.2.2.$tModels and Operational Definitions /$rJ. Notzel /$rH. Boche /$rM. Wiese --$g10.3.$tMain Results and Insights /$rJ. Notzel /$rH. Boche /$rM. Wiese --$g10.3.1.$tAssisted Capacities: Coding Theorems for CmeanSran, CmaxSran, and Ckey /$rJ. Notzel /$rH. Boche /$rM. Wiese --$g10.3.2.$tThe Non-Assisted Capacity /$rJ. Notzel /$rH. Boche /$rM. Wiese --$g10.3.3.$tOpen Questions /$rJ. Notzel /$rH. Boche /$rM. Wiese --$g10.4.$tProofs and Intermediate Technical Results /$rJ. Notzel /$rH. Boche /$rM. Wiese --$g10.4.1.$tTechnical Definitions, Results, and Facts /$rJ. Notzel /$rH. Boche /$rM. Wiese --$g10.4.2.$tBasic Quantities and Estimates /$rJ. Notzel /$rH. Boche /$rM. Wiese --$g10.4.3.$tProofs of Lemmas /$rJ. Notzel /$rH. Boche /$rM. Wiese --$g10.4.4.$tProofs of Theorems /$rJ. Notzel /$rH. Boche /$rM. Wiese --$tReferences /$rJ. Notzel /$rH. Boche /$rM. Wiese --$g11.$tSuper-Activation as a Unique Feature of Secure Communication over Arbitrarily Varying Channels /$rJ. Notzel /$rH. Boche /$rM. Wiese --$g11.1.$tIntroduction /$rR.F. Schaefer /$rH.V. Poor /$rH. Boche --$g11.2.$tProblem Motivation /$rR.F. Schaefer /$rH.V. Poor /$rH. Boche --$g11.3.$tNotation /$rR.F. Schaefer /$rH.V. Poor /$rH. Boche --$g11.4.$tArbitrarily Varying Wiretap Channel /$rH. Boche /$rR.F. Schaefer /$rH.V. Poor --$g11.4.1.$tSystem Model /$rR.F. Schaefer /$rH.V. Poor /$rH. Boche --$g11.4.2.$tCode Concepts /$rR.F. Schaefer /$rH.V. Poor /$rH. Boche --$g11.4.3.$tCapacity Results /$rR.F. Schaefer /$rH.V. Poor /$rH. Boche --$g11.5.$tSuper-Activation of Orthogonal AVWCs /$rR.F. Schaefer /$rH.V. Poor /$rH. Boche --$g11.6.$tSuper-Additivity of Orthogonal AVCs /$rR.F. Schaefer /$rH.V. Poor /$rH. Boche --$g11.7.$tDiscussion /$rR.F. Schaefer /$rH.V. Poor /$rH. Boche --$tReferences /$rR.F. Schaefer /$rH.V. Poor /$rH. Boche --$g12.$tMultiple Secret Key Generation: Information Theoretic Models and Key Capacity Regions /$rR.F. Schaefer /$rH.V. Poor /$rH. Boche --$g12.1.$tIntroduction /$rH. Zhang /$rY. Liang /$rL. Lai /$rS. Shamai --$g12.2.$tHierarchical Model /$rS. Shamai /$rL. Lai /$rH. Zhang /$rY. Liang --$g12.2.1.$tModel Description /$rS. Shamai /$rL. Lai /$rY. Liang /$rH. Zhang --$g12.2.2.$tKey Capacity Region /$rY. Liang /$rS. Shamai /$rL. Lai /$rH. Zhang --$g12.3.$tCellular Model /$rL. Lai /$rS. Shamai /$rY. Liang /$rH. Zhang --$g12.3.1.$tTwo Key Generation over Three Terminals /$rL. Lai /$rH. Zhang /$rS. Shamai /$rY. Liang --$g12.3.2.$tTwo Key Generation Assisted by a Helper /$rL. Lai /$rS. Shamai /$rY. Liang /$rH. Zhang --$g12.4.$tGenerating Multiple Keys under the PIN Model /$rY. Liang /$rS. Shamai /$rL. Lai /$rH. Zhang --$g12.4.1.$tTwo Pairs Case /$rL. Lai /$rS. Shamai /$rY. Liang /$rH. Zhang --$g12.4.2.$tGeneral Case /$rY. Liang /$rL. Lai /$rS. Shamai /$rH. Zhang --$g12.5.$tDiscussion and Future Topics /$rY. Liang /$rH. Zhang /$rL. Lai /$rS. Shamai --$tReferences /$rH. Zhang /$rY. Liang /$rL. Lai /$rS. Shamai --$g13.$tSecret Key Generation for Physical Unclonable Functions /$rH. Zhang /$rS. Shamai /$rL. Lai /$rY. Liang --$g13.1.$tIntroduction /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.2.$tNotation /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.3.$tAn Information Theoretical View on Key Storage with PUFs /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.3.1.$tSource Model /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.3.2.$tCommunication Channel /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.3.3.$tKey Agreement /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.3.4.$tRate and Capacity /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.3.5.$tAttack Vectors /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.3.6.$tSummary /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.4.$tUnified Algebraic Description of Secret Key and Helper Data Generation /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.4.1.$tBackground for Further Analysis /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.4.2.$tVulnerability of the Pre-and Postprocessing /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.4.3.$tLeakage of the Algebraic Core /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.5.$tAlgebraic Core Representations of State-of-the-Art Helper Data Generation /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.5.1.$tFuzzy Commitment /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.5.2.$tCode-Offset Fuzzy Extractor /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.5.3.$tFuzzy Extractor with Syndrome Construction /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.5.4.$tParity Construction /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.5.5.$tSystematic Low Leakage Coding /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.5.6.$tIndex-Based Syndrome Coding /$rG. Sigl /$rM. Hiller /$rM. Pehl --$g13.5.7.$tComplementary IBS /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.5.8.$tSummary of State-of-the-Art Syndrome Decoders /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g13.6.$tConclusions /$rM. Pehl /$rG. Sigl /$rM. Hiller --$tReferences /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g14.$tWireless Physical-Layer Authentication for the Internet of Things /$rM. Pehl /$rG. Sigl /$rM. Hiller --$g14.1.$tIoT Authentication Overview /$rG. Caparra --$g14.2.$tState of the Art /$rG. Caparra --$g14.2.1.$tPhysical-Layer Authentication /$rG. Caparra --$g14.3.$tIoT Channel-Based Authentication /$rG. Caparra --$g14.3.1.$tAuthentication Protocol /$rG. Caparra --$g14.3.2.$tAuthentication Protocol Performance /$rG. Caparra --$g14.4.$tCentralized Anchor Node Selection /$rG. Caparra --$g14.4.1.$tEnergy-Efficient Anchor Node Selection /$rG. Caparra --$g14.4.2.$tSignaling-Efficient Anchor Selection /$rG. Caparra --$g14.4.3.$tA Tradeoff between Energy Efficiency and Signaling Efficiency /$rG. Caparra --$g14.5.$tDistributed Anchor Node Selection /$rG. Caparra --$g14.5.1.$tDistributed Configuration Selection /$rG. Caparra --$g14.5.2.$tDistributed SNR-Based Anchor Node Selection /$rG. Caparra --$g14.6.$tPerformance Summary and Conclusions /$rG. Caparra --$g14.6.1.$tSummary /$rG. Caparra --$tReferences /$rG. Caparra --$g15.$tInformation Theoretic Analysis of the Performance of Biometric Authentication Systems /$rG. Caparra --$g15.1.$tIntroduction /$rF.M.J. Willems /$rT. Ignatenko --$g15.1.1.$tChapter Organization /$rF.M.J. Willems /$rT. Ignatenko --$g15.2.$tEnrollment and Authentication Statistics /$rF.M.J. Willems /$rT. Ignatenko --$g15.3.$tTraditional Authentication Systems /$rF.M.J. Willems /$rT. Ignatenko --$g15.3.1.$tScenario and Objective /$rF.M.J. Willems /$rT. Ignatenko --$g15.3.2.$tAchievability Definition and Result /$rF.M.J. Willems /$rT. Ignatenko --$g15.3.3.$tDiscussion /$rF.M.J. Willems /$rT. Ignatenko --$g15.4.$tRate-Constrained Authentication Systems /$rF.M.J. Willems /$rT. Ignatenko --$g15.4.1.$tScenario and Objective /$rF.M.J. Willems /$rT. Ignatenko --$g15.4.2.$tAchievability Definition and Result /$rF.M.J. Willems /$rT. Ignatenko --$g15.4.3.$tDiscussion /$rF.M.J. Willems /$rT. Ignatenko --$g15.5.$tSecret-Key-Based Authentication Systems /$rF.M.J. Willems /$rT. Ignatenko --$g15.5.1.$tScenario and Objective /$rF.M.J. Willems /$rT. Ignatenko --$g15.5.2.$tSystem Building Blocks: Encoder, Decoder, and Equality Checker; FRR and mFAR /$rF.M.J. Willems /$rT. Ignatenko --$g15.5.3.$tDefinition of Achievability and Statement of Result /$rF.M.J. Willems /$rT. Ignatenko --$g15.5.4.$tRelation to Ahlswede-Csiszar Secret Generation /$rT. Ignatenko /$rF.M.J. Willems --$g15.5.5.$tDiscussion /$rF.M.J. Willems /$rT. Ignatenko --$g15.6.$tProof of Theorem 15.3 /$rF.M.J. Willems /$rT. Ignatenko --$g15.6.1.$tAchievability Proof for Theorem 15.3 /$rF.M.J. Willems /$rT. Ignatenko --$g15.6.2.$tConverse for Theorem 15.3 /$rF.M.J. Willems /$rT. Ignatenko --$g15.7.$tPrivacy Leakage in Secret-Based Systems /$rF.M.J. Willems /$rT. Ignatenko --$g15.8.$tProof of Theorem 15.5 /$rF.M.J. Willems /$rT. Ignatenko
650 0 $aTelecommunication systems$xSecurity measures.
650 0 $aPrivacy.
700 1 $aSchaefer, Rafael F.,$d1982-$eeditor.
700 1 $aBoche, Holger,$eeditor.
700 1 $aKhisti, Ashish,$d1979-$eeditor.
700 1 $aPoor, H. Vincent,$eeditor.
947 $hCIRCSTACKS$r31786103110539
980 $a99975645735