It looks like you're offline.
Open Library logo
additional options menu

MARC record from Internet Archive

LEADER: 03882cam 2200853 i 4500
001 ocm22907040
003 OCoLC
005 20191203214307.0
008 901129s1991 riua b 000 0 eng
010 $a 90026421
040 $aDLC$beng$cDLC$dWEA$dUBA$dBAKER$dNLGGC$dBTCTA$dYDXCP$dOCLCG$dDEBBG$dNUI$dGBVCP$dOCLCO$dOCLCF$dOCLCQ$dDEBSZ$dOCLCQ$dOCLCO$dCPO$dOCLCQ$dTXI$dOCLCO$dS2H$dOCLCO$dBUF$dOCLCO
020 $a0821825062
020 $a9780821825068
035 $a(OCoLC)22907040
050 00 $aQA3$b.A57 no. 443
082 00 $a510 s$a514$220
084 $a31.65$2bcl
084 $a31.27$2bcl
084 $aSI 810$2rvk
084 $aMAT 552f$2stub
100 1 $aBenson, D. J.$q(David J.),$d1955-
245 10 $aMapping class groups of low genus and their cohomology /$cD.J. Benson, F.R. Cohen.
260 $aProvidence, R.I., USA :$bAmerican Mathematical Society,$c℗♭1991.
300 $aiv, 104 pages :$billustrations ;$c26 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
338 $avolume$bnc$2rdacarrier
490 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vno. 443
500 $a"March 1991, volume 90, number 443 (end of volume)."
504 $aIncludes bibliographical references at chapter ends.
505 00 $tIntroduction /$rD.J. Benson and F.R. Cohen --$tArtin's braid group and the homology of certain subgroups of the mapping class group /$rF.R. Cohen --$tSpecht modules and the cohomology of mapping class groups /$rD.J. Benson --$tThe mod 2 cohomology of the mapping class group for a surface of genus two /$rD.J. Benson and F.R. Cohen.
520 $aThis series of papers is aimed towards the calculation of the cohomology of the mapping class group of a closed oriented surface of genus two. This is all 2, 3, and 5-torsion. The mod 5 cohomology is given in the first paper, the mod 3 cohomology in the second, and the mod 2 cohomology in the third. Along the way, we investigate many interesting properties of mapping class groups.
650 0 $aLow-dimensional topology.
650 0 $aComplexes.
650 0 $aMappings (Mathematics)
650 0 $aHomology theory.
650 1 $aComplexes.
650 2 $aMappings [Mathematics].
650 3 $aHomology theory.
650 7 $aComplexes.$2fast$0(OCoLC)fst00871597
650 7 $aHomology theory.$2fast$0(OCoLC)fst00959720
650 7 $aLow-dimensional topology.$2fast$0(OCoLC)fst01003200
650 7 $aMappings (Mathematics)$2fast$0(OCoLC)fst01008724
650 7 $aHomologietheorie$2gnd
650 7 $aKlassengruppe$2gnd
650 7 $aKohomologie$2gnd
650 7 $aKomplex$gTopologie$2gnd
650 7 $aTopologia.$2larpcal
650 07 $aHomologietheorie.$2swd
650 07 $aKomplex (Topologie)$2swd
653 0 $aComplexes
653 0 $aHomology theory
653 0 $aLow-dimensional topology
653 0 $aMappings (Mathematics)
700 1 $aCohen, Frederick R.$q(Frederick Ronald),$d1945-$eauthor.
830 0 $aMemoirs of the American Mathematical Society ;$vno. 443.
856 41 $3Table of contents$uhttp://www.gbv.de/dms/hbz/toc/ht003750835.pdf
856 41 $3Table of contents$uhttp://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=1896862&custom_att_2=simple_viewer
938 $aBaker & Taylor$bBKTY$c22.00$d26.95$i0821825062$n0001886599$sactive
938 $aBaker and Taylor$bBTCP$n90026421
938 $aYBP Library Services$bYANK$n773679
029 1 $aAU@$b000007703561
029 1 $aDEBBG$bBV004339830
029 1 $aDEBBG$bBV006592394
029 1 $aDEBBG$bBV008585283
029 1 $aDEBBG$bBV008982465
029 1 $aDEBSZ$b043838197
029 1 $aGBVCP$b022738835
029 1 $aGEBAY$b1520749
029 1 $aHEBIS$b01986910X
029 1 $aNLGGC$b079216188
029 1 $aZWZ$b021828229
994 $aZ0$bP4A
948 $hNO HOLDINGS IN P4A - 207 OTHER HOLDINGS