Record ID | ia:modelbasedgeosta0000digg |
Source | Internet Archive |
Download MARC XML | https://archive.org/download/modelbasedgeosta0000digg/modelbasedgeosta0000digg_marc.xml |
Download MARC binary | https://www.archive.org/download/modelbasedgeosta0000digg/modelbasedgeosta0000digg_meta.mrc |
LEADER: 02751cam a2200565 a 4500
001 012661304-4
005 20130308185720.0
008 060703s2007 nyuab b 001 0 eng
010 $a 2006927417
015 $aGBA676069$2bnb
015 $a06,N22,0959$2dnb
016 7 $a013546813$2Uk
020 $a0387329072 (hbk. : acid-free paper)
020 $a9780387329079 (hbk. : acid-free paper)
020 $z9870387329079
035 0 $aocm71284654
040 $aUKM$beng$cUKM$dBAKER$dWAU$dYDXCP$dOHX$dDLC$dBTCTA$dAGL$dIQU$dHEBIS$dI8H$dDEBBG$dOCLCQ$dOCL$dOCLCQ
042 $apcc
050 00 $aQE33.2.S82$bD54 2007
070 0 $aQE33.2.S82$bD54 2007
082 04 $a550.15195$222
084 $a550$2sdnb
084 $aGEO 007f$2stub
084 $aMAT 622f$2stub
084 $aRB 10103$2rvk
084 $aSK 850$2rvk
100 1 $aDiggle, Peter.
245 10 $aModel-based geostatistics /$cPeter J. Diggle, Paulo J. Ribeiro, Jr.
246 30 $aGeostatistics
260 $aNew York :$bSpringer,$cc2007.
300 $axiii, 228 p. :$bill., maps ;$c25 cm.
440 0 $aSpringer series in statistics
504 $aIncludes bibliographical references (p. [218]-226) and index.
505 0 $aIntroduction -- An overview of model-based statistics -- Gaussian models for geostatistical data -- Generalized linear models for geostatistical data -- Classical parameter estimation -- Spatial prediction -- Bayesian inference -- Geostatistical design -- A statistical background.
520 $aThis volume is the first book-length treatment of model-based geostatistics. The text is expository, emphasizing statistical methods and applications rather than the underlying mathematical theory. Analyses of datasets from a range of scientific contexts feature prominently, and simulations are used to illustrate theoretical results. Readers can reproduce most of the computational results in the book by using the authors' software package, geoR, whose usage is illustrated in a computation section at the end of each chapter. The book assumes a working knowledge of classical and Bayesian methods of inference, linear models, and generalized linear models.
650 24 $aStatistics for Engineering, Physics, Computer Science, Chemistry & Geosciences.
650 24 $aStatistical Theory and Methods.
650 24 $aMath. Applications in Geosciences.
650 10 $aEarth sciences.
650 0 $aStatistics.
650 0 $aMathematical statistics.
650 0 $aGeology$xStatistical methods.
650 0 $aGeology$xMathematical models.
650 07 $aGeostatistik.$2swd
700 1 $aRibeiro, Paulo J.
830 0 $aSpringer series in statistics.
899 $a415_565546
899 $a415_565869
988 $a20110124
906 $0OCLC