Record ID | ia:partialregularit0000mose |
Source | Internet Archive |
Download MARC XML | https://archive.org/download/partialregularit0000mose/partialregularit0000mose_marc.xml |
Download MARC binary | https://www.archive.org/download/partialregularit0000mose/partialregularit0000mose_meta.mrc |
LEADER: 01715pam a22002894a 4500
001 5395715
005 20050927121144.0
008 050105s2005 nju b 001 0 eng
010 $a 2005041725
020 $a9812560858 (alk. paper)
035 $a(OCoLC)ocm57422401
035 $a(NNC)5395715
040 $aDLC$cDLC$dYDX$dOrLoB-B
042 $apcc
049 $aZCUA
050 00 $aQA614.73$b.M67 2005
082 00 $a514/.74$222
100 1 $aMoser, Roger.
245 10 $aPartial regularity for harmonic maps and related problems /$cby Roger Moser.
260 $aHackensack, NJ :$bWorld Scientific,$cc2005.
300 $aviii, 184 p. ;$c24 cm.
504 $aIncludes bibliographical references (p. 179-181) and index.
505 00 $g1.$tIntroduction -- $g2.$tAnalytic preliminaries -- $g3.$tHarmonic maps -- $g4.$tAlmost harmonic maps -- $g5.$tEvolution problems.
520 1 $a"The book presents a collection of results pertaining to the partial regularity of solutions to various variational problems, all of which are connected to the Dirichlet energy of maps between Riemannian manifolds, and thus related to the harmonic map problem. The topics covered include harmonic maps and generalized harmonic maps; certain perturbed versions of the harmonic map equation; the harmonic map heat flow; and the Landau Litshitz (or Landau-Litshitz-Gilbert) equation. Since the methods in regularity theory of harmonic maps are quite subtle, it is not immediately clear how they can be applied to certain problems that arise in applications. The book discusses in particular this question."--BOOK JACKET.
650 0 $aHarmonic maps$xMathematical models.
650 0 $aMathematical physics.
852 00 $bmat$hQA614.73$i.M67 2005