Record ID | ia:pythontextproces0000perk |
Source | Internet Archive |
Download MARC XML | https://archive.org/download/pythontextproces0000perk/pythontextproces0000perk_marc.xml |
Download MARC binary | https://www.archive.org/download/pythontextproces0000perk/pythontextproces0000perk_meta.mrc |
LEADER: 08903cam 2201009 a 4500
001 ocn775351847
003 OCoLC
005 20211014191232.0
008 120206s2010 enka o 001 0 eng d
006 m o d
007 cr cnu---unuuu
040 $aN$T$beng$epn$cN$T$dOCLCQ$dYDXCP$dOCLCF$dOCLCQ$dIDEBK$dEBLCP$dDEBSZ$dOCLCQ$dUMI$dE7B$dCOO$dHEBIS$dUKMGB$dNLE$dN$T$dOCLCQ$dCOCUF$dAGLDB$dCNNOR$dMOR$dCCO$dPIFAG$dZCU$dNRC$dOCLCQ$dMERUC$dOCLCQ$dJBG$dUEJ$dU3W$dBRL$dSTF$dWRM$dVTS$dCEF$dICG$dINT$dVT2$dAU@$dOCLCQ$dA6Q$dDKC$dOCLCQ$dM8D$dUKAHL$dOCLCQ$dVLY$dAJS$dOCLCQ
016 7 $a015850114$2Uk
019 $a698590629$a740439207$a741351182$a816619923$a823126171$a961508808$a962695627$a988459593$a991922107$a1037525055$a1038662444$a1055400103$a1058318185$a1081278595$a1083584027$a1103267028$a1129365869$a1162006830$a1241822830
020 $a9781849513616$q(electronic bk.)
020 $a1849513619$q(electronic bk.)
020 $a9786612905155
020 $a6612905158
020 $z1282905155
020 $z9781282905153
020 $z9781849513609
020 $z1849513600
035 $a(OCoLC)775351847$z(OCoLC)698590629$z(OCoLC)740439207$z(OCoLC)741351182$z(OCoLC)816619923$z(OCoLC)823126171$z(OCoLC)961508808$z(OCoLC)962695627$z(OCoLC)988459593$z(OCoLC)991922107$z(OCoLC)1037525055$z(OCoLC)1038662444$z(OCoLC)1055400103$z(OCoLC)1058318185$z(OCoLC)1081278595$z(OCoLC)1083584027$z(OCoLC)1103267028$z(OCoLC)1129365869$z(OCoLC)1162006830$z(OCoLC)1241822830
037 $aCL0500000095$bSafari Books Online
050 4 $aQA76.73.P98$bP47 2010eb
072 7 $aCOM$x051310$2bisacsh
072 7 $aCOM$x051280$2bisacsh
072 7 $aCOM$x051130$2bisacsh
072 7 $aUMW$2bicssc
082 04 $a005.133$222
100 1 $aPerkins, Jacob.
245 10 $aPython text processing with NLTK 2.0 Cookbook :$bover 80 practical recipes for using Python's NLTK suite of libraries to maximize your natural language processing capabilities /$cJacob Perkins.
246 30 $aOver 80 practical recipes for using Python's NLTK suite of libraries to maximize your natural language processing capabilities
246 3 $aOver 80 practical recipes for using Python's Natural Language Toolkit suite of libraries to maximize your natural language processing capabilities
260 $aBirmingham ;$aMumbai :$bPACKT Publishing,$c2010.
300 $a1 online resource (iii, 256 pages) :$billustrations
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
500 $a"Open source community experience distilled."
500 $a"Quick answers to common problems"--Cover
500 $aIncludes index.
588 0 $aPrint version record.
505 0 $aCover -- Copyright -- Credits -- About the Author -- About the Reviewers -- Table of Contents -- Preface -- Chapter 1: Tokenizing Text and Wordnet Basics -- Introduction -- Tokenizing Text Into Sentences -- Tokenizing Sentences Into Words -- Tokenizing Sentences Using Regular -- Expressions -- Filtering Stopwords in a Tokenized Sentence -- Looking Up Synsets for a Word in Wordnet -- Looking Up Lemmas and Synonyms -- in Wordnet -- Calculating Wordnet Synset Similarity -- Discovering Word Collocations -- Chapter 2: Replacing and Correcting Words -- Introduction -- Stemming Words -- Lemmatizing Words With Wordnet -- Translating Text With Babelfish -- Replacing Words Matching Regular -- Removing Repeating Characters -- Spelling Correction With Enchant -- Replacing Synonyms -- Replacing Negations With Antonyms -- Chapter 3: Creating Custom Corpora -- Introduction -- Setting Up a Custom Corpus -- Creating a Word List Corpus -- Creating a Part-of-Speech Tagged Word -- Corpus -- Creating a Chunked Phrase Corpus -- Creating a Categorized Text Corpus -- Creating a Categorized Chunk Corpus Reader -- Lazy Corpus Loading -- Creating a Custom Corpus View -- Creating a Mongodb Backed Corpus Reader -- Corpus Editing With File Locking -- Chapter 4: Part-of-Speech Tagging -- Introduction -- Default Tagging -- Training a Unigram Part-of-Speech Tagger -- Combining Taggers With Backoff Tagging -- Training and Combining Ngram Taggers -- Creating a Model of Likely Word Tags -- Tagging With Regular Expressions -- Affix Tagging -- Training a Brill Tagger -- Training the Tnt Tagger -- Using Wordnet for Tagging -- Tagging Proper Names -- Classifier Based Tagging -- Chapter 5: Extracting Chunks -- Introduction -- Chunking and Chinking With Regular -- Merging and Splitting Chunks With Regular Expressions -- Expanding and Removing Chunks With -- Regular Expressions -- Partial Parsing With Regular Expressions -- Training a Tagger-Based Chunker -- Classification-Based Chunking -- Extracting Named Entities -- Extracting Proper Noun Chunks -- Extracting Location Chunks -- Training a Named Entity Chunker -- Chapter 6: Transforming Chunks and Trees -- Introduction -- Filtering Insignificant Words -- Correcting Verb Forms -- Swapping Verb Phrases -- Swapping Noun Cardinals -- Swapping Infinitive Phrases -- Singularizing Plural Nouns -- Chaining Chunk Transformations -- Converting a Chunk Tree to Text -- Flattening a Deep Tree -- Creating a Shallow Tree -- Converting Tree Nodes -- Chapter 7: Text Classification -- Introduction -- Bag of Words Feature Extraction -- Training a Naive Bayes Classifier -- Training a Decision Tree Classifier -- Training a Maximum Entropy Classifier -- Measuring Precision and Recall of a -- Classifier -- Calculating High Information Words -- Combining Classifiers With Voting -- Classifying With Multiple Binary Classifiers -- Chapte.
520 $aThe learn-by-doing approach of this book will enable you to dive right into the heart of text processing from the very first page. Each recipe is carefully designed to fulfill your appetite for Natural Language Processing. Packed with numerous illustrative examples and code samples, it will make the task of using the NLTK for Natural Language Processing easy and straightforward. This book is for Python programmers who want to quickly get to grips with using the NLTK for Natural Language Processing. Familiarity with basic text processing concepts is required. Programmers experienced in the NLTK will also find it useful. Students of linguistics will find it invaluable.
546 $aEnglish.
650 0 $aPython (Computer program language)
650 0 $aNatural language processing (Computer science)
650 7 $aCOMPUTERS$xProgramming Languages$xC♯$2bisacsh
650 7 $aCOMPUTERS$xProgramming Languages$xJava.$2bisacsh
650 7 $aCOMPUTERS$xProgramming Languages$xPascal.$2bisacsh
650 7 $aNatural language processing (Computer science)$2fast$0(OCoLC)fst01034365
650 7 $aPython (Computer program language)$2fast$0(OCoLC)fst01084736
655 4 $aElectronic books.
776 08 $iPrint version:$aPerkins, Jacob.$tPython text processing with NTLK 2.0 Cookbook.$dBirmingham ; Mumbai : PACKT Publishing, 2010$z9781849513609$w(OCoLC)711962863
856 40 $3ebrary$uhttp://site.ebrary.com/id/10435387
856 40 $3EBSCOhost$uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=421782
856 40 $3MyiLibrary$uhttp://www.myilibrary.com?id=290515
856 40 $3ProQuest Ebook Central$uhttps://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=1126730
856 40 $3Safari Books Online$uhttps://proquest.safaribooksonline.com/9781849513609
856 40 $3Safari Books Online$uhttps://www.safaribooksonline.com/library/view//9781849513609/?ar
856 40 $3Safari Books Online$uhttps://www.safaribooksonline.com/library/view/title/9781849513609/?ar?orpq&email=^u
856 40 $3Safari Books Online$uhttps://www.safaribooksonline.com/library/view//9781849513609/?ar?orpq&email=^u
856 40 $3VLeBooks$uhttp://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781849513616
856 40 $uhttps://nls.ldls.org.uk/welcome.html?ark:/81055/vdc_100035548705.0x000001
856 4 $3Volltext$uhttp://proquest.tech.safaribooksonline.de/9781849513609$xVerlag
938 $aAskews and Holts Library Services$bASKH$nAH26943763
938 $aEBL - Ebook Library$bEBLB$nEBL1126730
938 $aebrary$bEBRY$nebr10435387
938 $aEBSCOhost$bEBSC$n421782
938 $aProQuest MyiLibrary Digital eBook Collection$bIDEB$n290515
938 $aYBP Library Services$bYANK$n3601894
029 1 $aAU@$b000050974235
029 1 $aAU@$b000062377736
029 1 $aAU@$b000066754767
029 1 $aCHNEW$b000605519
029 1 $aDEBBG$bBV043171205
029 1 $aDEBBG$bBV044172931
029 1 $aDEBSZ$b36847755X
029 1 $aDEBSZ$b372803598
029 1 $aDEBSZ$b397482248
029 1 $aDEBSZ$b421460997
029 1 $aGBVCP$b803880669
029 1 $aHEBIS$b291544541
029 1 $aNZ1$b14170366
994 $aZ0$bP4A
948 $hHELD BY P4A - 1515 OTHER HOLDINGS