It looks like you're offline.
Open Library logo
additional options menu

MARC record from Internet Archive

LEADER: 03551cam 2200613Ia 4500
001 ocm44548665
003 OCoLC
005 20220720093117.0
008 980914s2000 maua b 000 0 eng d
040 $aHLS$beng$cHLS$dUMC$dMUQ$dBAKER$dYDXCP$dDRB$dOCLCG$dDEBBG$dBDX$dOCLCF$dOCLCO$dOCLCQ$dNAM$dU3W$dNJR$dOCLCO$dDCHUA$dOCLCO$dIL4J6$dOCLCO$dCNO$dOCLCO$dOKS$dOCLCO
020 $a1571460616
020 $a9781571460615
035 $a(OCoLC)44548665
050 4 $aQA613.2$b.T383 2000
082 04 $a516.07$221
084 $aSK 370$2rvk
100 1 $aTaubes, Clifford,$d1954-
245 10 $aSeiberg Witten and Gromov invariants for symplectic 4-manifolds /$cClifford Henry Taubes ; edited by Richard Wentworth.
260 $aSomerville, MA :$bInternational Press,$c©2000.
300 $aiv, 401 pages :$billustrations ;$c25 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
338 $avolume$bnc$2rdacarrier
490 1 $aFirst International Press lecture series ;$vv. 2
500 $a"First International Press Lecture Series."
504 $aIncludes bibliographical references.
505 0 $aSW [approaches] Gr -- 1. The Seiberg-Witten equations -- 2. Estimates -- 3. The monotonicity formula -- 4. The local structure of [alpha][superscript -1](0) -- 5. Convergence to a current -- 6. Positivity and pseudo-holomorphic curves -- 7. Constraints on symplectic 4-manifolds -- Counting pseudo-holomorphic submanifolds in dimension 4 -- 1. The definition of Gr -- 2. The definition of r(C,1) -- 3. The definition of r(C,m) when m > 1 -- 4. The meaning of the term "admissable" -- 5. The proofs -- 6. A toroidal example -- 7. D on other surfaces -- Gr [approaches] SW -- 1. Setting the stage -- 2. The gluing construction -- 3. Introduction to Z[subscript o] and Z -- 4. From almost solutions to true solutions, I -- 5. From almost solutions to true solutions, II -- 6. Analytic structures -- Gr = SW -- 1. Seiberg-Witten and Gromov-Witten Invariants -- 2. The proof of Theorem 1 -- 3. Z[subscript o] and compactness: The proof of Proposition 2.7 -- 4. Orientations and other constructions for M[superscript (r)] -- 5. The Proof of Proposition 2.10 -- 6. The image of [psi][subscript r] -- 7. Proof of Proposition 2.13.
650 0 $aFour-manifolds (Topology)
650 0 $aSymplectic manifolds.
650 0 $aSeiberg-Witten invariants.
650 6 $aVariétés topologiques à 4 dimensions.
650 6 $aInvariants de Seiberg-Witten.
650 6 $aVariétés symplectiques.
650 7 $aFour-manifolds (Topology)$2fast$0(OCoLC)fst00933389
650 7 $aSeiberg-Witten invariants.$2fast$0(OCoLC)fst01111244
650 7 $aSymplectic manifolds.$2fast$0(OCoLC)fst01140991
650 7 $aDimension 4$2gnd
650 7 $aSeiberg-Witten-Invariante$2gnd
650 7 $aSymplektische Mannigfaltigkeit$2gnd
650 7 $aFour-manifolds (Topology)$2nli
650 7 $aSymplectic manifolds.$2nli
650 7 $aSeiberg-Witten invariants.$2nli
700 1 $aWentworth, Richard.
711 2 $aInternational Press Lecture Series$n(1st :$d1996 :$cIrvine, Calif.)
830 0 $aFirst International Press lecture series ;$vv. 2.
938 $aBaker & Taylor$bBKTY$c70.00$d74.95$i1571460616$n0003603348$sactive
938 $aBrodart$bBROD$n56984618$c$42.00
938 $aYBP Library Services$bYANK$n1730670
029 1 $aAU@$b000023143980
029 1 $aDEBBG$bBV013584266
029 1 $aNZ1$b6844335
029 1 $aYDXCP$b1730670
994 $aZ0$bIME
948 $hNO HOLDINGS IN IME - 111 OTHER HOLDINGS