Record ID | ia:selectingorderin00gibb |
Source | Internet Archive |
Download MARC XML | https://archive.org/download/selectingorderin00gibb/selectingorderin00gibb_marc.xml |
Download MARC binary | https://www.archive.org/download/selectingorderin00gibb/selectingorderin00gibb_meta.mrc |
LEADER: 03834cam 2200745 i 4500
001 ocm02836969
003 OCoLC
005 20101019152748.0
008 770308s1977 nyua b 001 0 eng
010 $a 77003700
040 $aDLC$cDLC$dMUQ$dYBM$dBAKER$dNLGGC$dOCLCG$dAU@$dZWZ$dDEBBG
019 $a222344172
020 $a0471026700
020 $a9780471026709
035 $a(OCoLC)2836969$z(OCoLC)222344172
050 00 $aQA278.7$b.G5
082 00 $a519.5/4$219
084 $a31.73$2bcl
084 $aMS 4100$2rvk
084 $aMS 4250$2rvk
084 $aQH 233$2rvk
084 $aQH 252$2rvk
084 $aSK 830$2rvk
100 1 $aGibbons, Jean Dickinson,$d1938-
245 10 $aSelecting and ordering populations :$ba new statistical methodology /$cJean Dickinson Gibbons, Ingram Olkin, Milton Sobel.
260 $aNew York :$bWiley,$cc1977.
300 $axxi, 569 p. :$bill. ;$c24 cm.
440 0 $aWiley series in probability and mathematical statistics
440 2 $aA Wiley publication in applied statistics
504 $aBibliography: p. 543-556.
500 $aIncludes indexes.
505 0 $a1. The philosophy of selecting and ordering populations -- 2. Selecting the one best population for normal distributions with common known variance -- 3. Selecting the one best population for other normal distribution models -- 4. Selecting the one best population for binomial (or Bernoulli) distributions -- 5. Selecting the one normal population with the smallest variance -- 6. Selecting the one best category for the multinomial distribution -- 7. Nonparametric selection procedures -- 8. Selection procedures for a design with paired comparisons -- 9. Selecting the normal population with the best regression value -- 10. Selecting normal populations better than a control -- 11. Selecting the t best out of k populations -- 12. Complete ordering of k populations -- 13. Subset selection (or elimination) procedures -- 14. Selecting the best gamma population -- 15. Selection procedures for multivariate normal distributions.
650 0 $aOrder statistics.
650 0 $aRanking and selection (Statistics)
650 6 $aStatistiques ordonnées.
650 7 $apopulation.$2inriac
650 7 $améthode statistique.$2inriac
655 7 $aPopulationstheorie.$2swd
650 07 $aBiostatistik.$2swd
700 1 $aOlkin, Ingram,$ejoint author.
700 1 $aSobel, Milton,$d1919-$ejoint author.
938 $aBaker & Taylor$bBKTY$c55.50$d55.50$i0471026700$n0000060728$sactive
952 $a2836969$zDLC$bLIBRARY OF CONGRESS$hFull$iLCC$kDDC$tContents$u20100530
952 $a135086684$zUBY$bBRIGHAM YOUNG UNIV LIBR$hFull$iLCC$kDDC$u20100724
952 $a177330372$zPUL$bPRINCETON UNIV$hFull$iLCC$kDDC$u20100703
952 $a187028270$zPAU$bUNIV OF PENNSYLVANIA$hFull$iLCC$kDDC$u20100727
952 $a215524065$zCUY$bUNIV OF CALIFORNIA, BERKELEY$hFull$iLCC$kDDC$u20100710
952 $a224133694$zCLS$bHARVARD UNIV, CABOT SCI LIBR$hOther$iLCC$u20100710
952 $a235482947$zHLS$bHARVARD UNIV, HARVARD COL LIBR$hOther$iLCC$u20100726
952 $a253174503$zVVT$bCOLUMBIA UNIV, TEACHERS COL$hPrepub$iLCC$u20100726
952 $a266382528$zCUD$bCAMBRIDGE UNIV$hFull$u20100627
952 $a272971307$zSTF$bSTANFORD UNIV LIBR$hPrepub$iLCC$kDDC$u20100716
952 $a469461144$zTEU$bTEMPLE UNIV$hOther$u20100701
952 $a487230857$zN15$bNEW YORK UNIV, GROUP BATCHLOAD$hFull$iLCC$kDDC$u20100705
029 1 $aNLGGC$b780034554
029 1 $aNLGGC$b20054294X
029 1 $aNZ1$b2747486
029 1 $aAU@$b000000857540
029 1 $aZWZ$b017840406
029 1 $aAU@$b000014286786
029 1 $aHEBIS$b026404907
029 1 $aDEBBG$bBV002254864
029 1 $aDEBBG$bBV021978134
994 $aZ0$bPMR
948 $hNO HOLDINGS IN PMR - 526 OTHER HOLDINGS