Record ID | ia:selfpoweredsocpl0000unse |
Source | Internet Archive |
Download MARC XML | https://archive.org/download/selfpoweredsocpl0000unse/selfpoweredsocpl0000unse_marc.xml |
Download MARC binary | https://www.archive.org/download/selfpoweredsocpl0000unse/selfpoweredsocpl0000unse_meta.mrc |
LEADER: 06044cam 2200817Ii 4500
001 on1007921653
003 OCoLC
005 20200930081143.0
008 171029s2017 sz a ob 001 0 eng d
006 m o d
007 cr |n|||||||||
040 $aYDX$beng$epn$cYDX$dN$T$dGW5XE$dEBLCP$dOCLCF$dUAB$dU3W$dCAUOI$dOCLCQ$dOCLCA$dLVT$dUKMGB$dOCLCO$dMERER$dOCLCQ$dUKAHL$dOCLCQ$dOCLCO$dOCLCQ$dOCLCA$dOCLCQ
015 $aGBB8O1796$2bnb
016 7 $a019105331$2Uk
019 $a1007700444$a1008583754
020 $a9783319639734$q(electronic bk.)
020 $a3319639730$q(electronic bk.)
020 $z9783319639727
020 $z3319639722
035 $a(OCoLC)1007921653$z(OCoLC)1007700444$z(OCoLC)1008583754
037 $acom.springer.onix.9783319639734$bSpringer Nature
050 4 $aRG628.3.H42
072 7 $aMED$x033000$2bisacsh
082 04 $a618.320754$223
245 00 $aSelf-powered SoC platform for analysis and prediction of cardiac arrhythmias /$cHani Saleh, Nourhan Bayasi, Baker Mohammad, Mohammed Ismail.
260 $aCham, Switzerland :$bSpringer,$c©2017.
300 $a1 online resource :$billustrations
300 $a1 online resource
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
490 1 $aACSP - analog circuits and signal processing
504 $aIncludes bibliographical references and index.
505 0 $aPreface -- Acknowledgments -- Abbreviations -- Contents -- List of Figures -- List of Tables -- Chapter 1: Introduction -- 1.1 Remote Monitoring System (RMS) -- 1.1.1 Key Enabling Technologies -- 1.1.2 Economical Impact -- 1.2 Electrocardiographic Signal -- 1.3 Cardiac Arrhythmias -- 1.4 The Problem with Existing Cardiac Arrhythmia Automatic Diagnostic Solutions -- 1.5 Proposed Solutions and Book Contribution -- 1.6 Goal of the Work -- 1.7 Book Outline -- Chapter 2: Literature Review -- 2.1 Cardiovascular Diseases -- 2.1.1 Mortality
505 8 $a2.1.2 Prevalence2.2 ECG Filtering: A Review -- 2.3 ECG Feature Extraction Techniques: A Review -- 2.4 ECG Classification Techniques: A Review -- 2.4.1 Support Vector Machine (SVM) -- 2.4.2 Artificial Neural Network (ANN) -- 2.4.3 Hidden Markov Model (HMM) -- 2.4.4 Linear Discriminant Analysis (LDA) -- 2.4.5 Naive Bayes -- 2.4.6 Hybrid Methods -- 2.5 Hardware Implementation of ECG Signal Processing Systems: A Review -- 2.5.1 State-of-the-Art -- Chapter 3: System Design and Development -- 3.1 ECG Databases -- 3.2 Analytical Methods for ECG Preprocessing
505 8 $a3.2.1 QRS Complex Detection3.2.2 T and P Wave Delineation -- 3.3 Feature Extraction -- 3.3.1 Short-Term ECG Features -- 3.3.2 Statistical Analysis -- 3.3.3 Information Gain Attribute Evaluation -- 3.4 Classification Using Naive Bayes -- 3.4.1 Classification Procedure -- Chapter 4: Hardware Design and Implementation -- 4.1 System Architecture -- 4.2 Design of the Preprocessing Stage -- 4.2.1 Realization of QRS Complex Detection -- 4.2.2 Realization of T and P Wave Delineation -- 4.3 Design of the Classification Stage -- 4.4 ASIC Implementation
505 8 $a4.4.1 Set Specifications and Prepare the Golden Model4.4.2 RTL Coding and Testbench -- 4.4.3 Synthesis -- 4.4.4 IC Compiler (ICC) -- 4.4.5 Chip Finishing -- Chapter 5: Performance and Results -- 5.1 Matlab Simulation Results -- 5.1.1 Performance of the Preprocessing Stage: Part 1 -- 5.1.2 Performance of the Feature Extraction Stage -- 5.1.2.1 Performance of Individual Features -- 5.1.2.2 Performance of Feature Combinations -- 5.1.3 Performance of the Classification Stage: Part 1 -- 5.1.4 Comparison to Published Work: Part 1
505 8 $a5.2 ASIC Implementation Results5.2.1 Performance of the Preprocessing Stage: Part 2 -- 5.2.2 Performance of the Classification Stage: Part 2 -- 5.2.3 Comparison to Published Work: Part 2 -- 5.3 First Tapeout -- 5.3.1 Testing and Implementation -- Chapter 6: Conclusions -- Bibliography
650 0 $aHeart rate monitoring.
650 0 $aCardiovascular instruments, Implanted.
650 0 $aPatient monitoring.
650 0 $aCardiac pacemakers.
650 2 $aElectrocardiography, Ambulatory.
650 7 $aMEDICAL$xGynecology & Obstetrics.$2bisacsh
650 7 $aComputer architecture & logic design.$2bicssc
650 7 $aBiomedical engineering.$2bicssc
650 7 $aCircuits & components.$2bicssc
650 7 $aCardiac pacemakers.$2fast$0(OCoLC)fst00847063
650 7 $aCardiovascular instruments, Implanted.$2fast$0(OCoLC)fst00847169
650 7 $aHeart rate monitoring.$2fast$0(OCoLC)fst00953739
650 7 $aPatient monitoring.$2fast$0(OCoLC)fst01055018
655 4 $aElectronic books.
700 1 $aSaleh, Hani,$eauthor.
700 1 $aBayasi, Nourhan,$eauthor.
700 1 $aMohammad, Baker,$eauthor.
700 1 $aIsmail, Mohammed,$eauthor.
776 08 $iPrint version:$tSelf-powered SoC platform for analysis and prediction of cardiac arrhythmias.$dCham, Switzerland : Springer, ©2017$z9783319639727$z3319639722$w(OCoLC)992747712
830 0 $aAnalog circuits and signal processing series.
856 40 $3EBSCOhost$uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1621545
856 40 $3ProQuest Ebook Central$uhttps://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=5111456
856 40 $3SpringerLink$uhttps://doi.org/10.1007/978-3-319-63973-4
856 40 $3SpringerLink$uhttps://link.springer.com/book/10.1007/978-3-319-63973-4
856 40 $3VLeBooks$uhttp://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783319639734
938 $aAskews and Holts Library Services$bASKH$nAH33859141
938 $aProQuest Ebook Central$bEBLB$nEBL5111456
938 $aEBSCOhost$bEBSC$n1621545
938 $aYBP Library Services$bYANK$n14926987
029 1 $aAU@$b000061056918
029 1 $aUKMGB$b019105331
994 $aZ0$bP4A
948 $hNO HOLDINGS IN P4A - 181 OTHER HOLDINGS