It looks like you're offline.
Open Library logo
additional options menu

MARC record from Internet Archive

LEADER: 04778cam 2200925 i 4500
001 ocm26012947
003 OCoLC
005 20191203214818.0
008 920527s1992 riua b 000 0 eng
010 $a 92018060
040 $aDLC$beng$cDLC$dBAKER$dBTCTA$dYDXCP$dGEBAY$dNUI$dCHRRO$dDEBBG$dBDX$dGBVCP$dOCLCO$dOCLCF$dOCLCQ$dDEBSZ$dTXI
019 $a715319557
020 $a0821825399$q(acid-free paper)
020 $a9780821825396$q(acid-free paper)
035 $a(OCoLC)26012947$z(OCoLC)715319557
050 00 $aQA3$b.A57 no. 476
072 7 $as1ma$2rero
082 00 $a510 s$a512/.74$220
084 $aMAT 123d$2stub
084 $aMAT 140d$2stub
084 $aMAT 202d$2stub
084 $aSA 4935$2rvk
084 $aSI 810$2rvk
084 $a31.21$2bcl
100 1 $aHales, Thomas Callister.
245 14 $aThe subregular germ of orbital integrals /$cThomas C. Hales.
260 $aProvidence, R.I. :$bAmerican Mathematical Society,$c℗♭1992.
300 $axi, 142 pages :$billustrations ;$c26 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
338 $avolume$bnc$2rdacarrier
490 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vno. 476
500 $a"September 1992, volume 99, number 476 (third of 4 numbers)."
502 $aA revision of the author's thesis (Ph. D.)--Princeton University, 1986.
504 $aIncludes notations and conventions, and bibliographical references (pages 133-134).
505 00 $tBasic constructions --$tCoordinates and coordinate relations --$tGroups of rank two --$tThe subregular spurious divisor --$tThe subregular fundamental divisor --$tRationality and characters --$tApplications to endoscopic groups.
520 $aAn integral formula for the subregular germ of a [italic small capital]K-orbital integral is developed. The formula holds for any reductive group over a [italic]p-adic field of characteristic zero. This expression of the subregular germ is obtained by applying Igusa's theory of asymptotic expansions. The integral formula is applied to the question of the transfer of a [italic small capital]K-orbital integral to an endoscopic group. It is shown that the quadratic characters arising in the subregular germs are compatible with the transfer. Details of the transfer are given for the subregular germ of unitary groups.
650 0 $ap-adic fields.
650 0 $aRepresentations of groups.
650 0 $aGerms (Mathematics)
650 7 $aGerms (Mathematics)$2fast$0(OCoLC)fst00942198
650 7 $ap-adic fields.$2fast$0(OCoLC)fst01185027
650 7 $aRepresentations of groups.$2fast$0(OCoLC)fst01094938
650 07 $aKeim (Mathematik)$2swd
650 07 $aGruppentheorie.$2swd
650 07 $aDarstellungstheorie.$2swd
650 07 $ap-adischer Zahlko rper.$2swd
650 07 $aOrbit (Mathematik)$2swd
650 07 $aDarstellungstheorie.$0(DE-588)4148816-7$2gnd
650 07 $aGruppentheorie.$0(DE-588)4072157-7$2gnd
650 07 $aKeim (Mathematik)$0(DE-588)4030157-6$2gnd
650 07 $aOrbit (Mathematik)$0(DE-588)4238277-4$2gnd
650 07 $aOrbitalintegral.$0(DE-588)4317881-9$2gnd
650 07 $ap-adischer Zahlko rper.$0(DE-588)4173065-3$2gnd
653 0 $aGerms (Mathematics)
653 0 $aRepresentations of groups
653 0 $ap-adic fields
740 0 $aOrbital integrals.
830 0 $aMemoirs of the American Mathematical Society ;$vno. 476.
856 41 $3Table of contents$uhttp://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=005764950&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
856 41 $3Table of contents$uhttp://www.gbv.de/dms/hbz/toc/ht004310333.pdf
856 41 $3Table of contents$uhttp://www.gbv.de/dms/bowker/toc/9780821825396.pdf
856 $uhttp://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005764950&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA$zInhaltsverzeichnis
856 4 $3Inhaltsverzeichnis$uhttp://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=1896994&custom%5Fatt%5F2=simple%5Fviewer$yThe subregular germ of orbital integrals
938 $aBaker & Taylor$bBKTY$c29.00$d33.95$i0821825399$n0002147701$sactive
938 $aBrodart$bBROD$n45141630$c$28.00
938 $aBaker and Taylor$bBTCP$n92018060 //r93
938 $aYBP Library Services$bYANK$n773712
029 1 $aAU@$b000009078907
029 1 $aCHRRO$b1593284
029 1 $aDEBBG$bBV008735444
029 1 $aGBVCP$b022380655
029 1 $aGBVCP$b121825191
029 1 $aGEBAY$b2112332
029 1 $aHEBIS$b023433930
029 1 $aNLGGC$b095607811
029 1 $aZWZ$b014182866
029 1 $aDEBSZ$b046329145
994 $aZ0$bP4A
948 $hNO HOLDINGS IN P4A - 200 OTHER HOLDINGS