It looks like you're offline.
Open Library logo
additional options menu

MARC record from Internet Archive

LEADER: 05931cam 2200541 a 4500
001 ocm06603435
003 OCoLC
005 20180730031630.0
008 800718s1981 dcua b 001 0 eng
010 $a 80019964
040 $aDLC$beng$cDLC$dUBA$dNLGGC$dLVB$dAU@$dNIALS$dOCLCF$dEEK$dDEBBG$dOCLCO$dOCLCQ$dCSJ$dOCLCQ
019 $a789648131$a1016420350
020 $a0070553467
020 $a9780070553460
035 $a(OCoLC)6603435$z(OCoLC)789648131$z(OCoLC)1016420350
050 00 $aTJ260$b.S315 1981
082 00 $a621.402/8$219
084 $a52.41$2bcl
100 1 $aSchmidt, Frank W.,$d1929-
245 10 $aThermal energy storage and regeneration /$cFrank W. Schmidt, A. John Willmott.
260 $aWashington :$bHemisphere Pub. Corp. ;$aNew York :$bMcGraw-Hill,$c℗♭1981.
300 $axvi, 352 pages :$billustrations ;$c24 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
338 $avolume$bnc$2rdacarrier
490 1 $aSeries in thermal and fluids engineering
504 $aIncludes bibliographical references and index.
505 2 $a1. Thermal energy storage : Selection of the type of energy to be stored ; Thermal energy storage units -- 2. Single-blow operating mode: infinite fluid heat capacity and simplified models : Infinite fluid heat capacity ; Simplified model ; Simplified model employing a modified heat transfer coefficient -- 3. Single-blow operating mode: finite conductivity model : Finite conductivity model: slab configuration ; Finite conductivity model: hollow cylinder ; Comparison of results for finite conductivity models of hollow cylindrical and slab configurations ; Analysis of the effects of finite thermal conductivity -- 4. Prediction of transient response of heat storage units with timewise variations in inlet fluid temperature and mass flow rate : Superposition: timewise variations in inlet fluid temperature ; Superposition: arbitrary initial temperature distribution in the storage material ; Superposition: arbitrary variation in fluid mass flow rate -- 5. Basic concepts in counterflow regenerators : Mathematical model ; Discussion of design parameters ; Effect of cycle time on regenerator performance ; Imbalance in regenerator performance ; Solution of differential equations -- 6. Finite conductivity models of counterflow regenerators : Lumped heat transfer coefficients ; Further considerations of the effect of checkerwork conductivity ; Longitudinal conduction in the regenerator packing ; Note on numerical solution of equations including longitudinal conduction ; Latitudinal conduction in the regenerator checkerwork ; Relationship between the two-dimensional and three-dimensional models -- Possible improvements in the lumped heat transfer coefficient -- 7. Nonlinear models of counterflow regenerators : Mathematical representation ; Quasi-linearization of nonlinear models ; Methods for simulating nonsteady-state performance of regenerators ; Variable gas flow problems in regenerators ; Radiative heat transfer between gas and solid surface in regenerators -- 8. Improved computational methodology for regenerators : Open methods: numerical solution of the regenerator equations ; Control of truncation error ; Open methods: integral methods for simulation of the regenerator ; Closed methods ; Numerical acceleration of regenerator simulations -- 9. Parallel-flow regenerators : Method of analysis ; The heat pole method ; Refinement of the heat pole method ; Application of the Nahavandi and Weinstein method to parallel-flow regenerators ; Parallel-flow regenerator performance ; The approach of Kumar ; Unbalanced regenerators -- 10. Transient performance of counterflow regenerators : Initial considerations ; Response to a step change in operation conditions ; Step changes in inlet gas temperature ; Interpretation of the relation between the transient performance of a regenerator and its dimensionless parameters ; Step changes in gas flow rate ; Further parameterization of transient response ; Thermal inertia of variable gas flow regenerator systems -- 11. Heat storage exchangers : Two-fluid heat exchangers ; Heat flux and single-fluid heat storage exchanger -- 12. Packed beds : Mathematical models: single blow ; Arbitrary inlet fluid and initial bed conditions -- 13. Design optimization : Complex optimization method ; Optimization of a slab heat storate unit for single-blow operating mode ; Results from optimization study of slab heat storage units ; Optimization of a packed bed heat storage unit for single-blow operating mode ; Results from optimization study of packed bed storage units -- 14. Heat transfer and pressure drop correlations : Heat transfer and pressure drop correlations for channel flow ; Heat transfer and pressure drop correlations for flow in packed beds.
650 0 $aHeat storage devices.
650 0 $aHeat regenerators.
650 6 $aChaleur$xStockage$xAppareils et mate riel.
650 6 $aRe ge ne rateurs de chaleur.
650 7 $aHeat regenerators.$2fast$0(OCoLC)fst00953951
650 7 $aHeat storage devices.$2fast$0(OCoLC)fst00953986
650 17 $aEnergieopslag.$2gtt
650 17 $aWarmte.$2gtt
650 17 $aWarmtewisselaars.$2gtt
650 7 $aCalor.$2larpcal
700 1 $aWillmott, A. John,$d1934-
776 08 $iOnline version:$aSchmidt, Frank W., 1929-$tThermal energy storage and regeneration.$dWashington : Hemisphere Pub. Corp. ; New York : McGraw-Hill, ℗♭1981$w(OCoLC)557733327
776 08 $iOnline version:$aSchmidt, Frank W., 1929-$tThermal energy storage and regeneration.$dWashington : Hemisphere Pub. Corp. ; New York : McGraw-Hill, ℗♭1981$w(OCoLC)605569584
830 0 $aSeries in thermal and fluids engineering.
029 1 $aAU@$b000001771199
029 1 $aDEBBG$bBV002010291
029 1 $aGBVCP$b017466830
029 1 $aNLGGC$b80222850X
994 $aZ0$bP4A
948 $hNO HOLDINGS IN P4A - 310 OTHER HOLDINGS