Record ID | ia:transientbusyper00sloa |
Source | Internet Archive |
Download MARC XML | https://archive.org/download/transientbusyper00sloa/transientbusyper00sloa_marc.xml |
Download MARC binary | https://www.archive.org/download/transientbusyper00sloa/transientbusyper00sloa_meta.mrc |
LEADER: 01617nam 2200337K 45q0
001 000403403
003 MCM
004 000403403
005 20010608152445.0
008 900119s1989 maua rtb 000 0 eng d
035 $aMITb10403403
035 $a(OCoLC)20927416
035 $aGLIS00403403
040 $aMYG$cMYG
090 $aHD28$b.M414 no.3099-, 89
099 $aHD28.M414 no.3099- 89
245 00 $aTransient and busy period analysis of the GI/G/1 queue :$bPart II, solution as a Hilbert problem /$cby Dimitris J. Bertsimas ... [et al.].
260 $aCambridge, Mass. :$bCenter for Computational Research in Economics and Management Science, Sloan School of Management, Massachusetts Institute of Technology,$c1989.
300 $a16 p. :$bill. ;$c28 cm.
490 1 $aSloan W.P. ;$v3099-89-MS
504 $aIncludes bibliographical references (p. 15-16).
536 $aPartially supported by grants from the Leaders for Manufacturing Program at MIT and from Draper Laboratory.
700 1 $aBertsimas, Dimitris
710 2 $aSloan School of Management.$bCenter for Computational Research in Economics and Management Science.
740 0 $aHilbert problem, transient and busy period analysis of the GI/G/1 queue, Part II, solution as a.
830 0 $aWorking paper (Sloan School of Management) ;$v3099-89.
852 0 $aMCM$bDEW$cBASMT$hHD28.M414 no.3099- 89$4Dewey Library$5Basement
852 0 $aMCM$bARC$cNOLN2$hHD28.M414 no.3099- 89$z$4Institute Archives$5Noncirculating Collection 2
049 $aMYGV$aMYGD
910 $aeas900119
949 $aMYGV$b39080005894842$aMYGD$b39080005894818$b39080005790255