Record ID | ia:visualcomplexana0000need |
Source | Internet Archive |
Download MARC XML | https://archive.org/download/visualcomplexana0000need/visualcomplexana0000need_marc.xml |
Download MARC binary | https://www.archive.org/download/visualcomplexana0000need/visualcomplexana0000need_meta.mrc |
LEADER: 06433cam 2200853 a 4500
001 ocm36523806
003 OCoLC
005 20220906111108.0
008 970625s1997 enka b 001 0 eng d
010 $a 97165737
040 $aJNA$beng$cDLC$dJNA$dMUQ$dBAKER$dDST$dBTCTA$dYDXCP$dDEBBG$dJZ6$dZWZ$dUKBOL$dOCLCF$dOCLCO$dOCLCQ$dTXA$dOCLCQ$dOCLCO$dDHA$dOCLCQ$dCPO$dOCLCO$dYCP$dOCLCQ$dBGU$dOCLCO$dOCLCQ$dUWO$dUKUOY$dOCLCQ$dUTP$dOCLCO$dIEUOL$dOCLCO$dOCLCA$dOCLCQ$dNAG$dBUF$dOCLCO$dOCLCQ$dIPL$dIL4J6$dOCLCO$dEEI$dOCLCO$dOKS$dOCLCO$dUKMGB
015 $aGB96W2299$2bnb
016 7 $a012604576$2Uk
019 $a1167105191$a1201825516$a1292657879
020 $a0198534477
020 $a9780198534471
020 $a0198534469$q(pbk.)
020 $a9780198534464$q(pbk.)
035 $a(OCoLC)36523806$z(OCoLC)1167105191$z(OCoLC)1201825516$z(OCoLC)1292657879
042 $alccopycat
050 00 $aQA331.7$b.N44 1997
082 00 $a515/.9$221
084 $aSK 700$2rvk
084 $aSK 130$2rvk
084 $aMAT 300f$2stub
100 1 $aNeedham, Tristan.
245 10 $aVisual complex analysis /$cTristan Needham.
260 $aOxford :$bClarendon Press ;$aNew York :$bOxford University Press,$c1997.
300 $axxiii, 592 pages :$billustrations ;$c24 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
338 $avolume$bnc$2rdacarrier
504 $aIncludes bibliographical references (pages 573-578) and index.
520 $aThis approach to complex analysis aims to replace the standard calculational arguments with new geometric arguments. With several hundred diagrams, this is a visual intuitive introduction to complex analysis. The book is designed for use by undergraduates in mathematics and science.
505 00 $tGeometry and Complex Arithmetic --$tEuler's Formula --$tSome Applications --$tTransformations and Euclidean Geometry* --$tComplex Functions as Transformations --$tPolynomials --$tPower Series --$tThe Exponential Function --$tCosine and Sine --$tMultifunctions --$tThe Logarithm Function --$tAveraging over Circles* --$tMobius Transformations and Inversion --$tInversion --$tThree Illustrative Applications of Inversion --$tThe Riemann Sphere --$tMobius Transformations: Basic Results --$tMobius Transformations as Matrices* --$tVisualization and Classification* --$tDecomposition into 2 or 4 Reflections* --$tAutomorphisms of the Unit Disc* --$tDifferentiation: The Amplitwist Concept --$tA Puzzling Phenomenon --$tLocal Description of Mappings in the Plane --$tThe Complex Derivative as Amplitwist --$tSome Simple Examples --$tConformal = Analytic --$tCritical Points --$tThe Cauchy-Riemann Equations --$tFurther Geometry of Differentiation --$tCauchy-Riemann Revealed --$tAn Intimation of Rigidity --$tVisual Differentiation of log(z) --$tRules of Differentiation --$tPolynomials, Power Series, and Rational Functions --$tVisual Differentiation of the Power Function --$tVisual Differentiation of exp(z) --$tGeometric Solution of E' = E --$tAn Application of Higher Derivatives: Curvature* --$tCelestial Mechanics* --$tAnalytic Continuation* --$tNon-Euclidean Geometry* --$tSpherical Geometry --$tHyperbolic Geometry --$tWinding Numbers and Topology --$tWinding Number --$tHopf's Degree Theorem --$tPolynomials and the Argument Principle --$tA Topological Argument Principle*.
505 80 $tRouche's Theorem --$tMaxima and Minima --$tThe Schwarz-Pick Lemma* --$tThe Generalized Argument Principle --$tComplex Integration: Cauchy's Theorem --$tThe Real Integral --$tThe Complex Integral --$tComplex Inversion --$tConjugation --$tPower Functions --$tThe Exponential Mapping --$tThe Fundamental Theorem --$tParametric Evaluation --$tCauchy's Theorem --$tThe General Cauchy Theorem --$tThe General Formula of Contour Integration --$tCauchy's Formula and Its Applications --$tCauchy's Formula --$tInfinite Differentiability and Taylor Series --$tCalculus of Residues --$tAnnular Laurent Series --$tVector Fields: Physics and Topology --$tVector Fields --$tWinding Numbers and Vector Fields* --$tFlows on Closed Surfaces* --$tVector Fields and Complex Integration --$tFlux and Work --$tComplex Integration in Terms of Vector Fields --$tThe Complex Potential --$tFlows and Harmonic Functions --$tHarmonic Duals --$tConformal Invariance --$tA Powerful Computational Tool --$tThe Complex Curvature Revisited* --$tFlow Around an Obstacle --$tThe Physics of Riemann's Mapping Theorem --$tDirichlet's Problem.
540 $aCurrent Copyright Fee: GBP22.50$c0.$5Uk
650 0 $aFunctions of complex variables.
650 0 $aMathematical analysis.
650 1 $aMathematical analysis.
650 6 $aFonctions d'une variable complexe.
650 6 $aAnalyse mathématique.
650 7 $aFunctions of complex variables.$2fast$0(OCoLC)fst00936116
650 7 $aMathematical analysis.$2fast$0(OCoLC)fst01012068
650 7 $aFunktionentheorie$2gnd
650 7 $aVisualisierung$2gnd
650 7 $aFUNCTIONS (MATHEMATICS)$2nasat
650 7 $aCOMPLEX VARIABLES.$2nasat
650 7 $aFUNCTIONAL ANALYSIS.$2nasat
650 7 $aMATHEMATICAL LOGIC.$2nasat
650 7 $aFunctions of complex variables.$2nli
650 7 $aGeometry, Differential.$2nli
650 7 $aGéométrie.$2ram
650 7 $aFonctions d'une variable complexe.$2ram
650 7 $aAnalyse mathématique.$2ram
776 08 $iOnline version:$aNeedham, Tristan.$tVisual complex analysis.$dOxford : Clarendon Press ; New York : Oxford University Press, 1997$w(OCoLC)623019982
856 41 $3Table of contents$uhttp://catdir.loc.gov/catdir/enhancements/fy0640/97165737-t.html
856 42 $3Contributor biographical information$uhttp://catdir.loc.gov/catdir/enhancements/fy0726/97165737-b.html
856 42 $3Publisher description$uhttp://catdir.loc.gov/catdir/enhancements/fy0640/97165737-d.html
938 $aBaker & Taylor$bBKTY$c55.00$d55.00$i0198534477$n0002940050$sactive
938 $aBaker and Taylor$bBTCP$n97165737
938 $aYBP Library Services$bYANK$n1331107
029 1 $aAU@$b000013034045
029 1 $aDEBBG$bBV011449237
029 1 $aDEBBG$bBV021938260
029 1 $aHEBIS$b054132800
029 1 $aHR0$b0198534477
029 1 $aNLGGC$b154039861
029 1 $aNZ1$b4812792
029 1 $aUNITY$b060875461
029 1 $aYDXCP$b1331107
029 1 $aUKMGB$b012604576
994 $aZ0$bIME
948 $hNO HOLDINGS IN IME - 511 OTHER HOLDINGS