Record ID | marc_columbia/Columbia-extract-20221130-001.mrc:40728089:1513 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-001.mrc:40728089:1513?format=raw |
LEADER: 01513cam a2200385 i 4500
001 32685
005 20220518184850.0
008 801020s1978 gw b 000 0 eng
010 $a 79311440
015 $aGDR***
020 $c38.00M
035 $a(OCoLC)5355129
035 $a(OCoLC)ocm05355129
035 $a(CStRLIN)NYCG19167318-B
035 $9AAD4206CU
035 $a(NNC)32685
035 $a32685
050 00 $aQA247$b.H23
082 0 $a512/.32
090 $aQA247$b.H23
100 1 $aHaberland, Klaus.$0http://id.loc.gov/authorities/names/n79057646
245 10 $aGalois cohomology of algebraic number fields /$cby Klaus Haberland ; with two appendices by Helmut Koch and Thomas Zink.
260 $aBerlin :$bDeutscher Verlag der Wissenschaften,$c1978.
300 $a145 pages ;$c23 cm
336 $atext$2rdacontent
337 $aunmediated$2rdamedia
338 $avolume$2rdacarrier
504 $aIncludes bibliographies.
650 0 $aAlgebraic fields.$0http://id.loc.gov/authorities/subjects/sh85048127
650 0 $aGalois theory.$0http://id.loc.gov/authorities/subjects/sh85052872
650 0 $aHomology theory.$0http://id.loc.gov/authorities/subjects/sh85061770
700 1 $aKoch, Helmut,$d1932-$eauthor.$4http://id.loc.gov/vocabulary/relators/aut$0http://id.loc.gov/authorities/names/n79057645
700 1 $aZink, Thomas,$eauthor.$4http://id.loc.gov/vocabulary/relators/aut$0http://id.loc.gov/authorities/names/n79057647
852 00 $bmat$hQA247$i.H23
852 00 $bmat$hQA247$i.H23