Record ID | marc_columbia/Columbia-extract-20221130-003.mrc:411309464:1602 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-003.mrc:411309464:1602?format=raw |
LEADER: 01602fam a2200349 a 4500
001 1437895
005 20220602034618.0
008 930212s1993 enk b 001 0 eng
010 $a 93018565
020 $a0521440351
035 $a(OCoLC)27684862
035 $a(OCoLC)ocm27684862
035 $9AHV5905CU
035 $a(NNC)1437895
035 $a1437895
040 $aDLC$cDLC$dDLC$dNNC
050 00 $aQA311$b.P44 1993
082 00 $a515/.43$220
100 1 $aPfeffer, Washek F.$0http://id.loc.gov/authorities/names/n93013734
245 14 $aThe Riemann approach to integration :$blocal geometric theory /$cWashek F. Pfeffer.
260 $aCambridge ;$aNew York :$bCambridge University Press,$c1993.
263 $a9310
300 $axiv, 302 pages ;$c24 cm.
336 $atext$2rdacontent
337 $aunmediated$2rdamedia
338 $avolume$2rdacarrier
490 1 $aCambridge tracts in mathematics ;$v109
504 $aIncludes bibliographical references and index.
505 0 $aI. One-dimensional integration. 1. Preliminaries. 2. The McShane integral. 3. Measure and measurability. 4. Integrable functions. 5. Descriptive definition. 6. The Henstock-Kurzweil integral -- II. Multidimensional integration. 7. Preliminaries. 8. The McShane integral. 9. Descriptive definition. 10. Change of variables. 11. The gage integral. 12. The F-integral. 13. Recent developments.
650 0 $aRiemann integral.$0http://id.loc.gov/authorities/subjects/sh85114042
830 0 $aCambridge tracts in mathematics ;$v109.$0http://id.loc.gov/authorities/names/n42005726
852 00 $bmat$hQA311$i.P44 1993