It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-004.mrc:29399761:1761
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-004.mrc:29399761:1761?format=raw

LEADER: 01761fam a2200349 a 4500
001 1521347
005 20220602053044.0
008 940622t19941994nyu b 000 0 eng
010 $a 94027791
020 $a0306110342
035 $a(OCoLC)30779040
035 $a(OCoLC)ocm30779040
035 $9AJW8122CU
035 $a(NNC)1521347
035 $a1521347
040 $aDLC$cDLC$dDLC
041 1 $aeng$hrus
050 00 $aQA372$b.A83 1994
082 00 $a515/.35$220
245 00 $aAsymptotic methods in singularly perturbed systems /$cE.F. Mishchenko [and others] ; translated from Russian by Irene Aleksanova.
260 $aNew York :$bConsultants Bureau,$c[1994], ©1994.
300 $axi, 281 pages ;$c26 cm.
336 $atext$2rdacontent
337 $aunmediated$2rdamedia
338 $avolume$2rdacarrier
490 1 $aMonographs in contemporary mathematics
504 $aIncludes bibliographical references (p. 273-281).
505 0 $aCh. 1. Theorem on the C[superscript 1]-proximity of the solutions of a relaxation and a relay system and the asymptotics of relaxation oscillations -- Ch. 2. Relaxation oscillations in a medium with diffusion -- Ch. 3. Structure of the neighborhood of a relaxation cycle -- Ch. 4. Duck-trajectories of relaxation systems -- Ch. 5. Nonclassical relaxation auto-oscillations -- Ch. 6. Autowave processes in singularly perturbed systems of reaction-diffusion type.
650 0 $aDifferential equations$xAsymptotic theory.$0http://id.loc.gov/authorities/subjects/sh85037891
700 1 $aMishchenko, E. F.$q(Evgeniĭ Frolovich)$0http://id.loc.gov/authorities/names/n80094373
830 0 $aMonographs in contemporary mathematics.$0http://id.loc.gov/authorities/names/n94061401
852 00 $boff,eng$hQA372$i.A83 1994