It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-004.mrc:512280558:1585
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-004.mrc:512280558:1585?format=raw

LEADER: 01585mam a2200301 a 4500
001 1903751
005 20220609023322.0
008 960422t19961996si b 001 0 eng
010 $a 96016479
020 $a9810227361
035 $a(OCoLC)ocm34676775
035 $9ALZ6531CU
035 $a1903751
040 $aDLC$cDLC$dC#P$dOrLoB-B
050 00 $aQA320$b.S923 1996
082 00 $a515/.7$220
100 1 $aSwartz, Charles,$d1938-$0http://id.loc.gov/authorities/names/n84221175
245 10 $aInfinite matrices and the gliding hump /$cC. Swartz.
260 $aSingapore ;$aRiver Edge, N.J. :$bWorld Scientific,$c[1996], ©1996.
300 $axi, 209 pages ;$c23 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
504 $aIncludes bibliographical references (p. 197-209) and index.
505 00 $g1.$tIntroduction --$g2.$tThe Antosik-Mikusinski Matrix Theorem --$g3.$tK-Convergence and K-Boundedness --$g4.$tThe Uniform Boundedness Principle --$g5.$tThe Banach-Steinhaus Theorem --$g6.$tContinuity and Hypocontinuity for Bilinear Maps --$g7.$tPap's Adjoint Theorem --$g8.$tVector Versions of the Hahn-Schur Theorems --$g9.$tAn Abstract Hahn-Schur Theorem --$g10.$tThe Orlicz-Pettis Theorem --$g11.$tImbedding [actual symbol not reproducible] --$g12.$tSequence Spaces.
650 0 $aFunctional analysis.$0http://id.loc.gov/authorities/subjects/sh85052312
650 0 $aMeasure theory.$0http://id.loc.gov/authorities/subjects/sh85082702
650 0 $aInfinite matrices.$0http://id.loc.gov/authorities/subjects/sh85082213
852 00 $bmat$hQA320$i.S923 1996