It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-005.mrc:15852389:2667
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-005.mrc:15852389:2667?format=raw

LEADER: 02667mam a2200397 a 4500
001 2010829
005 20220609051255.0
008 970314s1997 riua b 001 0 eng
010 $a 97011489
020 $a0821805371 (acid-free paper)
035 $a(OCoLC)ocm36589536
035 $9AMN9209CU
035 $a(NNC)2010829
035 $a2010829
040 $aDLC$cDLC$dNNC$dOrLoB-B
041 1 $aeng$hjpn
050 00 $aQA614.86$b.Y3513 1997
082 00 $a514/.742$221
100 1 $aYamaguchi, Masaya,$d1925-$0http://id.loc.gov/authorities/names/n81144653
240 10 $aFurakutaru no sūri.$lEnglish$0http://id.loc.gov/authorities/names/n97027722
245 10 $aMathematics of fractals /$cMasaya Yamaguti, Masayoshi Hata, Jun Kigami ; translated by Kiki Hudson.
260 $aProvidence, R.I. :$bAmerican Mathematical Society,$c1997.
263 $a9707
300 $axi, 78 pages :$billustrations ;$c26 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
490 1 $aTranslations of mathematical monographs ;$vv. 167
504 $aIncludes bibliographical references and index.
505 00 $gCh. 1.$tThe Fundamentals of Fractals.$g1.1.$tWhat is the dimension?$g1.2.$tHausdorff measure and Hausdorff dimension.$g1.3.$tExamples of fractals and their Hausdorff dimensions.$g1.4.$tNowhere-differentiable functions --$gCh. 2.$tSelf-Similar Sets.$g2.1.$tExistence and uniqueness.$g2.2.$tThe size and shape of a self-similar set.$g2:3.$tSelf-affine sets.$g2:4.$tFractals and chaos --$gCh. 3.$tAn Alternative Computation for Differentiation.$g3.1.$tA chaotic dynamical system and its generating function.$g3.2.$tThe Schauder expansion.$g3.3.$tThe de Rham equations and Lebesgue's singular function.$g3.4.$tThe system of difference equations of Lebesgue's function.$g3.5.$tThe relation between T(x) and M[subscript alpha](x) and its generalization.$g3.6.$tWavelet expansions --$gCh. 4.$tIn Quest of Fractal Analysis.$g4.1.$tThe Sierpinski gasket.$g4.2.$tThe wave equation on the Sierpinski gasket. A physical observation.$g4.3.$tThe Laplacian on the Sierpinski gasket and a Gauss-Green type theorem.
505 80 $g4.4.$tThe Dirichlet problem for Poisson's equation.
650 0 $aFractals.$0http://id.loc.gov/authorities/subjects/sh85051147
650 0 $aChaotic behavior in systems.$0http://id.loc.gov/authorities/subjects/sh85022562
700 1 $aHata, Masayoshi.$0http://id.loc.gov/authorities/names/n97027696
700 1 $aKigami, Jun.$0http://id.loc.gov/authorities/names/n97027694
830 0 $aTranslations of mathematical monographs ;$vv. 167.$0http://id.loc.gov/authorities/names/n42025062
852 00 $bmat$hQA3$i.T73 v.167