It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-005.mrc:300418753:2497
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-005.mrc:300418753:2497?format=raw

LEADER: 02497fam a2200361 a 4500
001 2235426
005 20220615235712.0
008 980219t19981998nyua b 001 0 eng
010 $a 98013046
020 $a0387985042 (hardcover : alk. paper)
035 $a(OCoLC)38542622
035 $a(OCoLC)ocm38542622
035 $9ANW7682CU
035 $a(NNC)2235426
035 $a2235426
040 $aDLC$cDLC$dNNC$dOrLoB-B
050 00 $aQH323.5$b.B87 1998
082 00 $a570/.1/51$221
100 1 $aBurnham, Kenneth P.$0http://id.loc.gov/authorities/names/n82048046
245 10 $aModel selection and inference :$ba practical information theoretic approach /$cKenneth P. Burnham, David R. Anderson.
260 $aNew York :$bSpringer,$c[1998], ©1998.
263 $a9809
300 $axix, 353 pages :$billustrations ;$c24 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
504 $aIncludes bibliographical references (p.[329]-349) and index.
505 00 $g1.$tIntroduction --$g2.$tInformation Theory and Log-Likelihood Models: A Basis for Model Selection and Inference --$g3.$tPractical Use of the Information-Theoretic Approach --$g4.$tModel-Selection Uncertainty with Examples --$g5.$tMonte Carlo and Example-Based Insights --$g6.$tStatistical Theory --$g7.$tSummary.
520 $aThis book is unique in that it covers the philosophy of model-based data analysis and a strategy for the analysis of empirical data. The book introduces information-theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data.
520 8 $aThe book presents several new approaches to estimating model selection uncertainty and incorporating selection uncertainty into estimates of precision. An array of examples is given to illustrate various technical issues. This is an applied book written primarily for biologists and statisticians using models for making inferences from empirical data. People interested in the empirical sciences will find this material useful as it offers an alternative to hypothesis testing and Bayesian approaches.
650 0 $aBiology$xMathematical models.$0http://id.loc.gov/authorities/subjects/sh85014211
650 0 $aMathematical statistics.$0http://id.loc.gov/authorities/subjects/sh85082133
700 1 $aAnderson, David Raymond,$d1942-$0http://id.loc.gov/authorities/names/n82081876
852 00 $bsci$hQH323.5$i.B87 1998