It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-005.mrc:543334453:2878
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-005.mrc:543334453:2878?format=raw

LEADER: 02878mam a2200385 a 4500
001 2428398
005 20220616043220.0
008 990611t20002000nyua b 001 0 eng
010 $a 99036219
020 $a0387986375 (softcover : alk. paper)
020 $a0387986383 (hardcover : alk. paper)
035 $a(OCoLC)ocm41580624
035 $9APX3382CU
035 $a(NNC)2428398
035 $a2428398
040 $aDLC$cDLC$dMIA$dC#P$dOrLoB-B
050 00 $aQA564$b.E357 2000
082 00 $a516.3/5$221
100 1 $aEisenbud, David.$0http://id.loc.gov/authorities/names/n83203185
245 14 $aThe geometry of schemes /$cDavid Eisenbud, Joe Harris.
260 $aNew York :$bSpringer,$c[2000], ©2000.
300 $ax, 294 pages :$billustrations ;$c25 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
490 1 $aGraduate texts in mathematics ;$v197
504 $aIncludes bibliographical references (p. [279]-283) and index.
505 00 $gI.$tBasic Definitions.$gI.1.$tAffine Schemes.$gI.2.$tSchemes in General.$gI.3.$tRelative Schemes.$gI.4.$tThe Functor of Points --$gII.$tExamples.$gII.1.$tReduced Schemes over Algebraically Closed Fields.$gII.2.$tReduced Schemes over Non-Algebraically Closed Fields.$gII.3.$tNonreduced Schemes.$gII.4.$tArithmetic Schemes --$gIII.$tProjective Schemes.$gIII.1.$tAttributes of Morphisms.$gIII.2.$tProj of a Graded Ring.$gIII.3.$tInvariants of Projective Schemes --$gIV.$tClassical Constructions.$gIV.1.$tFlexes of Plane Curves.$gIV.2.$tBlow-ups.$gIV.3.$tFano Schemes.$gIV.4.$tForms --$gV.$tLocal Constructions.$gV.1.$tImages.$gV.2.$tResultants.$gV.3.$tSingular Schemes and Discriminants.$gV.4.$tDual Curves.$gV.5.$tDouble Point Loci --$gVI.$tSchemes and Functors.$gVI.1.$tThe Functor of Points.$gVI.2.$tCharacterization of a Space by its Functor of Points.
520 1 $a"This book is intended to bridge the chasm between a first course in classical algebraic geometry and a technical treatise on schemes. It focuses on examples and strives to show "what's going on" behind the definitions. There are many exercises to test and extend the reader's understanding. The prerequisites are modest: a little commutative algebra and an acquaintance with algebraic varieties, roughly at the level of a one-semester course.
520 8 $aThe book aims to show schemes in relation to other geometric ideas, such as the theory of manifolds. Some familiarity with these ideas is helpful, though not required."--BOOK JACKET.
650 0 $aSchemes (Algebraic geometry)$0http://id.loc.gov/authorities/subjects/sh85118107
700 1 $aHarris, Joe,$d1951-$0http://id.loc.gov/authorities/names/n83203184
830 0 $aGraduate texts in mathematics ;$v197.$0http://id.loc.gov/authorities/names/n83723435
852 00 $bmat$hQA564$i.E357 2000
852 00 $bmat$hQA564$i.E357 2000
852 00 $bmat$hQA564$i.E357 2000